T. Kunikiyo, Hidenori Sato, T. Kamino, Koji Iizuka, K. Sonoda, T. Yamashita
{"title":"一种基于硅上选择性生长锗的背照CMOS图像传感器像素在近红外入射下的相位检测自动聚焦技术","authors":"T. Kunikiyo, Hidenori Sato, T. Kamino, Koji Iizuka, K. Sonoda, T. Yamashita","doi":"10.23919/SISPAD49475.2020.9241631","DOIUrl":null,"url":null,"abstract":"A novel phase-detection auto focus (PDAF) technique for incident 850 nm plane wave is demonstrated using Ge-on-Si layer and deep trench isolation (DTI), which are locally arranged on light receiving surface (LRS) of crystalline silicon (c-Si). No metal light shielding film (LSF) for pupil division is formed. The key concept of the present work for PDAF is to perform the pupil division by the locally arranged Geon-Si layer in a pixel according to incident angle. The present pixel is based on a back-side illuminated CMOS image sensor pixel; the pixel pitch is 1.85 μm and the thickness of c-Si is around 3 μm. The simulation, based on three-dimensional finite difference time domain (3D-FDTD) method, shows that the external quantum efficiency (EQE) of the present pixel exhibits above 44.3 % with the maximum of 76.0 % for incident angles of - 30° to + 30°, owing to the selectively arranged Ge-on-Si layer; it exhibits 3.6 times improvement in the EQE at normal incidence compared to that of current state-of-the-art pixel with half metal-shielded aperture; the EQE is 49.2 % and 13.8 %, respectively. The present technique can enhance the accuracy of AF under low-illuminated condition.","PeriodicalId":206964,"journal":{"name":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A technique for phase-detection auto focus under near-infrared-ray incidence in a back-side illuminated CMOS image sensor pixel with selectively grown germanium on silicon\",\"authors\":\"T. Kunikiyo, Hidenori Sato, T. Kamino, Koji Iizuka, K. Sonoda, T. Yamashita\",\"doi\":\"10.23919/SISPAD49475.2020.9241631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel phase-detection auto focus (PDAF) technique for incident 850 nm plane wave is demonstrated using Ge-on-Si layer and deep trench isolation (DTI), which are locally arranged on light receiving surface (LRS) of crystalline silicon (c-Si). No metal light shielding film (LSF) for pupil division is formed. The key concept of the present work for PDAF is to perform the pupil division by the locally arranged Geon-Si layer in a pixel according to incident angle. The present pixel is based on a back-side illuminated CMOS image sensor pixel; the pixel pitch is 1.85 μm and the thickness of c-Si is around 3 μm. The simulation, based on three-dimensional finite difference time domain (3D-FDTD) method, shows that the external quantum efficiency (EQE) of the present pixel exhibits above 44.3 % with the maximum of 76.0 % for incident angles of - 30° to + 30°, owing to the selectively arranged Ge-on-Si layer; it exhibits 3.6 times improvement in the EQE at normal incidence compared to that of current state-of-the-art pixel with half metal-shielded aperture; the EQE is 49.2 % and 13.8 %, respectively. The present technique can enhance the accuracy of AF under low-illuminated condition.\",\"PeriodicalId\":206964,\"journal\":{\"name\":\"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/SISPAD49475.2020.9241631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SISPAD49475.2020.9241631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A technique for phase-detection auto focus under near-infrared-ray incidence in a back-side illuminated CMOS image sensor pixel with selectively grown germanium on silicon
A novel phase-detection auto focus (PDAF) technique for incident 850 nm plane wave is demonstrated using Ge-on-Si layer and deep trench isolation (DTI), which are locally arranged on light receiving surface (LRS) of crystalline silicon (c-Si). No metal light shielding film (LSF) for pupil division is formed. The key concept of the present work for PDAF is to perform the pupil division by the locally arranged Geon-Si layer in a pixel according to incident angle. The present pixel is based on a back-side illuminated CMOS image sensor pixel; the pixel pitch is 1.85 μm and the thickness of c-Si is around 3 μm. The simulation, based on three-dimensional finite difference time domain (3D-FDTD) method, shows that the external quantum efficiency (EQE) of the present pixel exhibits above 44.3 % with the maximum of 76.0 % for incident angles of - 30° to + 30°, owing to the selectively arranged Ge-on-Si layer; it exhibits 3.6 times improvement in the EQE at normal incidence compared to that of current state-of-the-art pixel with half metal-shielded aperture; the EQE is 49.2 % and 13.8 %, respectively. The present technique can enhance the accuracy of AF under low-illuminated condition.