{"title":"使用神经网络和k近邻进行天气预报和分类","authors":"Rh Mantri, Kulkarni Rakshit Raghavendra, Harshita Puri, Jhanavi Chaudhary, Kishore Bingi","doi":"10.1109/ICSCC51209.2021.9528115","DOIUrl":null,"url":null,"abstract":"This paper focuses on developing a weather prediction model to predict temperature and humidity. Further, a classification model is also extended to predict the weather condition using the expected model’s output. The proposed hybrid model can predict the temperature and humidity and forecast future weather conditions. The prediction and classification models are created using neural networks and k-nearest neighbors, respectively. The prediction model’s results have shown the best ability for both the output variables (temperature and humidity) with R2 values close to one and MSE values close to zero. Further, the classification model’s results also showed better execution in classifying the weather conditions with the highest accuracy values.","PeriodicalId":382982,"journal":{"name":"2021 8th International Conference on Smart Computing and Communications (ICSCC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Weather Prediction and Classification Using Neural Networks and k-Nearest Neighbors\",\"authors\":\"Rh Mantri, Kulkarni Rakshit Raghavendra, Harshita Puri, Jhanavi Chaudhary, Kishore Bingi\",\"doi\":\"10.1109/ICSCC51209.2021.9528115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on developing a weather prediction model to predict temperature and humidity. Further, a classification model is also extended to predict the weather condition using the expected model’s output. The proposed hybrid model can predict the temperature and humidity and forecast future weather conditions. The prediction and classification models are created using neural networks and k-nearest neighbors, respectively. The prediction model’s results have shown the best ability for both the output variables (temperature and humidity) with R2 values close to one and MSE values close to zero. Further, the classification model’s results also showed better execution in classifying the weather conditions with the highest accuracy values.\",\"PeriodicalId\":382982,\"journal\":{\"name\":\"2021 8th International Conference on Smart Computing and Communications (ICSCC)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 8th International Conference on Smart Computing and Communications (ICSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSCC51209.2021.9528115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 8th International Conference on Smart Computing and Communications (ICSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCC51209.2021.9528115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Weather Prediction and Classification Using Neural Networks and k-Nearest Neighbors
This paper focuses on developing a weather prediction model to predict temperature and humidity. Further, a classification model is also extended to predict the weather condition using the expected model’s output. The proposed hybrid model can predict the temperature and humidity and forecast future weather conditions. The prediction and classification models are created using neural networks and k-nearest neighbors, respectively. The prediction model’s results have shown the best ability for both the output variables (temperature and humidity) with R2 values close to one and MSE values close to zero. Further, the classification model’s results also showed better execution in classifying the weather conditions with the highest accuracy values.