雷达探测的非参数排列试验与最优参数试验

F. Álvarez-Vaquero, J. Sanz-González
{"title":"雷达探测的非参数排列试验与最优参数试验","authors":"F. Álvarez-Vaquero, J. Sanz-González","doi":"10.1109/ICSIGP.1996.567110","DOIUrl":null,"url":null,"abstract":"In this paper, we analyze a detector based on the optimum permutation test, applied to nonparametric radar detection which provides good performance without a large computational effort. We compare it with the parametric test in the Neyman-Pearson sense. We also show the characteristic of detectability of the optimum permutation test versus parametric one under Gaussian noise environments and different types of target models (nonfluctuating, Swerling I and Swerling II). The detection probability versus signal-to-noise ratio is calculated by Monte-Carlo simulations for different parameter values (pulse number N, reference samples M and false alarm probability P/sub fa/).","PeriodicalId":385432,"journal":{"name":"Proceedings of Third International Conference on Signal Processing (ICSP'96)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nonparametric permutation test versus optimum parametric test for radar detection\",\"authors\":\"F. Álvarez-Vaquero, J. Sanz-González\",\"doi\":\"10.1109/ICSIGP.1996.567110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we analyze a detector based on the optimum permutation test, applied to nonparametric radar detection which provides good performance without a large computational effort. We compare it with the parametric test in the Neyman-Pearson sense. We also show the characteristic of detectability of the optimum permutation test versus parametric one under Gaussian noise environments and different types of target models (nonfluctuating, Swerling I and Swerling II). The detection probability versus signal-to-noise ratio is calculated by Monte-Carlo simulations for different parameter values (pulse number N, reference samples M and false alarm probability P/sub fa/).\",\"PeriodicalId\":385432,\"journal\":{\"name\":\"Proceedings of Third International Conference on Signal Processing (ICSP'96)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Third International Conference on Signal Processing (ICSP'96)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSIGP.1996.567110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Third International Conference on Signal Processing (ICSP'96)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIGP.1996.567110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文分析了一种基于最优排列检验的检测器,该检测器在非参数雷达检测中具有良好的性能,且计算量小。我们将其与Neyman-Pearson意义上的参数检验进行比较。在高斯噪声环境和不同类型的目标模型(非波动、转向I和转向II)下,我们还展示了最优排列检验相对于参数化排列检验的可检测性特征,并通过蒙特卡罗模拟计算了不同参数值(脉冲数N、参考样本M和虚警概率P/sub fa/)下的检测概率与信噪比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonparametric permutation test versus optimum parametric test for radar detection
In this paper, we analyze a detector based on the optimum permutation test, applied to nonparametric radar detection which provides good performance without a large computational effort. We compare it with the parametric test in the Neyman-Pearson sense. We also show the characteristic of detectability of the optimum permutation test versus parametric one under Gaussian noise environments and different types of target models (nonfluctuating, Swerling I and Swerling II). The detection probability versus signal-to-noise ratio is calculated by Monte-Carlo simulations for different parameter values (pulse number N, reference samples M and false alarm probability P/sub fa/).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An adaptive vector quantization based on neural network Fast convergence algorithm for wavelet neural network used for signal or function approximation The study of ultrasonic imaging system for austenitic welds testing Identification of pelagic eggs by image analysis Using ANN for the recognition of vibration signals of off-shore equipment's failure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1