离散食物选择中的非确定性人类行为建模

Andrew Starnes, Anton Dereventsov, E. S. Blazek, Folasade Phillips
{"title":"离散食物选择中的非确定性人类行为建模","authors":"Andrew Starnes, Anton Dereventsov, E. S. Blazek, Folasade Phillips","doi":"10.1109/ICDMW58026.2022.00131","DOIUrl":null,"url":null,"abstract":"We establish a non-deterministic model that predicts a user's food preferences from their demographic information. Our simulator is based on NHANES dataset and domain expert knowledge in the form of established behavioral studies. Our model can be used to generate an arbitrary amount of synthetic datapoints that are similar in distribution to the original dataset and align with behavioral science expectations. Such a simulator can be used in a variety of machine learning tasks and especially in applications requiring human behavior prediction.","PeriodicalId":146687,"journal":{"name":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling Non-deterministic Human Behaviors in Discrete Food Choices\",\"authors\":\"Andrew Starnes, Anton Dereventsov, E. S. Blazek, Folasade Phillips\",\"doi\":\"10.1109/ICDMW58026.2022.00131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish a non-deterministic model that predicts a user's food preferences from their demographic information. Our simulator is based on NHANES dataset and domain expert knowledge in the form of established behavioral studies. Our model can be used to generate an arbitrary amount of synthetic datapoints that are similar in distribution to the original dataset and align with behavioral science expectations. Such a simulator can be used in a variety of machine learning tasks and especially in applications requiring human behavior prediction.\",\"PeriodicalId\":146687,\"journal\":{\"name\":\"2022 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW58026.2022.00131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW58026.2022.00131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们建立了一个非确定性模型,根据用户的人口统计信息预测他们的食物偏好。我们的模拟器基于NHANES数据集和已建立的行为研究形式的领域专家知识。我们的模型可用于生成任意数量的合成数据点,这些数据点在分布上与原始数据集相似,并符合行为科学的期望。这样的模拟器可以用于各种机器学习任务,特别是在需要人类行为预测的应用中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling Non-deterministic Human Behaviors in Discrete Food Choices
We establish a non-deterministic model that predicts a user's food preferences from their demographic information. Our simulator is based on NHANES dataset and domain expert knowledge in the form of established behavioral studies. Our model can be used to generate an arbitrary amount of synthetic datapoints that are similar in distribution to the original dataset and align with behavioral science expectations. Such a simulator can be used in a variety of machine learning tasks and especially in applications requiring human behavior prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Above Ground Biomass Estimation of a Cocoa Plantation using Machine Learning Backdoor Poisoning of Encrypted Traffic Classifiers Identifying Patterns of Vulnerability Incidence in Foundational Machine Learning Repositories on GitHub: An Unsupervised Graph Embedding Approach Data-driven Kernel Subspace Clustering with Local Manifold Preservation Persona-Based Conversational AI: State of the Art and Challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1