运用自学习感觉运动表征的多模态模仿

Martina Zambelli, Y. Demiris
{"title":"运用自学习感觉运动表征的多模态模仿","authors":"Martina Zambelli, Y. Demiris","doi":"10.1109/IROS.2016.7759582","DOIUrl":null,"url":null,"abstract":"Although many tasks intrinsically involve multiple modalities, often only data from a single modality are used to improve complex robots acquisition of new skills. We present a method to equip robots with multimodal learning skills to achieve multimodal imitation on-the-fly on multiple concurrent task spaces, including vision, touch and proprioception, only using self-learned multimodal sensorimotor relations, without the need of solving inverse kinematic problems or explicit analytical models formulation. We evaluate the proposed method on a humanoid iCub robot learning to interact with a piano keyboard and imitating a human demonstration. Since no assumptions are made on the kinematic structure of the robot, the method can be also applied to different robotic platforms.","PeriodicalId":296337,"journal":{"name":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Multimodal imitation using self-learned sensorimotor representations\",\"authors\":\"Martina Zambelli, Y. Demiris\",\"doi\":\"10.1109/IROS.2016.7759582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although many tasks intrinsically involve multiple modalities, often only data from a single modality are used to improve complex robots acquisition of new skills. We present a method to equip robots with multimodal learning skills to achieve multimodal imitation on-the-fly on multiple concurrent task spaces, including vision, touch and proprioception, only using self-learned multimodal sensorimotor relations, without the need of solving inverse kinematic problems or explicit analytical models formulation. We evaluate the proposed method on a humanoid iCub robot learning to interact with a piano keyboard and imitating a human demonstration. Since no assumptions are made on the kinematic structure of the robot, the method can be also applied to different robotic platforms.\",\"PeriodicalId\":296337,\"journal\":{\"name\":\"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2016.7759582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2016.7759582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

尽管许多任务本质上涉及多个模态,但通常只使用来自单一模态的数据来提高复杂机器人对新技能的习得。我们提出了一种方法,使机器人具备多模态学习技能,在多个并发任务空间(包括视觉、触觉和本体感觉)上实现多模态动态模仿,仅使用自学习的多模态感觉运动关系,而无需求解逆运动学问题或明确的分析模型制定。我们在一个仿人iCub机器人上评估了所提出的方法,该机器人学习与钢琴键盘交互并模仿人类演示。由于没有对机器人的运动结构作任何假设,因此该方法也可以应用于不同的机器人平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multimodal imitation using self-learned sensorimotor representations
Although many tasks intrinsically involve multiple modalities, often only data from a single modality are used to improve complex robots acquisition of new skills. We present a method to equip robots with multimodal learning skills to achieve multimodal imitation on-the-fly on multiple concurrent task spaces, including vision, touch and proprioception, only using self-learned multimodal sensorimotor relations, without the need of solving inverse kinematic problems or explicit analytical models formulation. We evaluate the proposed method on a humanoid iCub robot learning to interact with a piano keyboard and imitating a human demonstration. Since no assumptions are made on the kinematic structure of the robot, the method can be also applied to different robotic platforms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A passivity-based admittance control design using feedback interconnections Performance comparison of Wave Variable Transformation and Time Domain Passivity Approaches for time-delayed teleoperation: Preliminary results Iterative path optimisation for personalised dressing assistance using vision and force information Hand-eye calibration for robotic assisted minimally invasive surgery without a calibration object Modelling and dynamic analysis of underactuated capsule systems with friction-induced hysteresis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1