脑启发神经系统的时间特征分析

T. Fukai, Toshitake Asabuki
{"title":"脑启发神经系统的时间特征分析","authors":"T. Fukai, Toshitake Asabuki","doi":"10.23919/SNW.2019.8782948","DOIUrl":null,"url":null,"abstract":"The brain identifies potentially salient features within continuous information streams, but the underlying mechanisms are poorly understood. I will show two biologically inspired neural network models that perform such analyses. The seemingly different models suggest a common principle, which we term self-consistent mismatch detection, for temporal feature analyses. A network of two-compartment neuron model implementing this principle conducts a surprisingly wide variety of temporal feature analysis. The model is also potentially useful in neural engineering.","PeriodicalId":170513,"journal":{"name":"2019 Silicon Nanoelectronics Workshop (SNW)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporal feature analysis in brain-inspired neural systems\",\"authors\":\"T. Fukai, Toshitake Asabuki\",\"doi\":\"10.23919/SNW.2019.8782948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The brain identifies potentially salient features within continuous information streams, but the underlying mechanisms are poorly understood. I will show two biologically inspired neural network models that perform such analyses. The seemingly different models suggest a common principle, which we term self-consistent mismatch detection, for temporal feature analyses. A network of two-compartment neuron model implementing this principle conducts a surprisingly wide variety of temporal feature analysis. The model is also potentially useful in neural engineering.\",\"PeriodicalId\":170513,\"journal\":{\"name\":\"2019 Silicon Nanoelectronics Workshop (SNW)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Silicon Nanoelectronics Workshop (SNW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/SNW.2019.8782948\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Silicon Nanoelectronics Workshop (SNW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SNW.2019.8782948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大脑在连续信息流中识别出潜在的显著特征,但其潜在机制却知之甚少。我将展示两个执行此类分析的生物学启发的神经网络模型。看似不同的模型提出了一个共同的原则,我们称之为自一致错配检测,用于时间特征分析。实现这一原理的双室神经元网络模型进行了令人惊讶的广泛的时间特征分析。该模型在神经工程中也有潜在的用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Temporal feature analysis in brain-inspired neural systems
The brain identifies potentially salient features within continuous information streams, but the underlying mechanisms are poorly understood. I will show two biologically inspired neural network models that perform such analyses. The seemingly different models suggest a common principle, which we term self-consistent mismatch detection, for temporal feature analyses. A network of two-compartment neuron model implementing this principle conducts a surprisingly wide variety of temporal feature analysis. The model is also potentially useful in neural engineering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Charge Effects on Semiconductor-Metal Phase Transition in Mono-layer MoTe2 Reduced RTN Amplitude and Single Trap induced Variation for Ferroelectric FinFET by Substrate Doping Optimization Atomistic Study of Transport Characteristics in Sub-1nm Ultra-narrow Molybdenum Disulfide (MoS2) Nanoribbon Field Effect Transistors Si Electron Nano-Aspirator towards Emerging Hydro-Electronics 3D Heterogeneous Integration with 2D Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1