基于混合差分进化的生物反应模型参数估计

Feng-Sheng Wang, Horng-Jhy Jang
{"title":"基于混合差分进化的生物反应模型参数估计","authors":"Feng-Sheng Wang, Horng-Jhy Jang","doi":"10.1109/CEC.2000.870325","DOIUrl":null,"url":null,"abstract":"Hybrid differential evolution is applied to estimate the kinetic model parameters of batch fermentation for ethanol and glycerol production using Saccharomyces diastaticus LORRE 316. In this study, we consider the worst observed error for all experiments as an objective function so that the parameter estimation problem becomes a min-max estimation problem. Several methods have been employed to solve the min-max estimation problem for comparison. The proposed method can use a small population size to obtain a more satisfactory solution as compared from these computations. In order to validate the kinetic model, we have carried out the fedbatch experiments with an optimal feed rate. The experimental data can fit the computed results satisfactorily.","PeriodicalId":218136,"journal":{"name":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":"{\"title\":\"Parameter estimation of a bioreaction model by hybrid differential evolution\",\"authors\":\"Feng-Sheng Wang, Horng-Jhy Jang\",\"doi\":\"10.1109/CEC.2000.870325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hybrid differential evolution is applied to estimate the kinetic model parameters of batch fermentation for ethanol and glycerol production using Saccharomyces diastaticus LORRE 316. In this study, we consider the worst observed error for all experiments as an objective function so that the parameter estimation problem becomes a min-max estimation problem. Several methods have been employed to solve the min-max estimation problem for comparison. The proposed method can use a small population size to obtain a more satisfactory solution as compared from these computations. In order to validate the kinetic model, we have carried out the fedbatch experiments with an optimal feed rate. The experimental data can fit the computed results satisfactorily.\",\"PeriodicalId\":218136,\"journal\":{\"name\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2000.870325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2000.870325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

摘要

采用杂交差分进化方法,估计了利用发酵菌LORRE 316分批发酵生产乙醇和甘油的动力学模型参数。在本研究中,我们将所有实验的最小观测误差作为目标函数,使参数估计问题成为最小-最大估计问题。为了比较,我们采用了几种方法来解决最小-最大估计问题。与这些计算相比,该方法可以使用较小的种群规模来获得更令人满意的解。为了验证动力学模型,我们以最优进料速率进行了进料批实验。实验数据与计算结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parameter estimation of a bioreaction model by hybrid differential evolution
Hybrid differential evolution is applied to estimate the kinetic model parameters of batch fermentation for ethanol and glycerol production using Saccharomyces diastaticus LORRE 316. In this study, we consider the worst observed error for all experiments as an objective function so that the parameter estimation problem becomes a min-max estimation problem. Several methods have been employed to solve the min-max estimation problem for comparison. The proposed method can use a small population size to obtain a more satisfactory solution as compared from these computations. In order to validate the kinetic model, we have carried out the fedbatch experiments with an optimal feed rate. The experimental data can fit the computed results satisfactorily.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Test-case generator TCG-2 for nonlinear parameter optimisation Accelerating multi-objective control system design using a neuro-genetic approach On the use of stochastic estimator learning automata for dynamic channel allocation in broadcast networks A hierarchical distributed genetic algorithm for image segmentation Genetic learning of multi-attribute interactions in speaker verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1