{"title":"非最小相位导弹系统输出重定义高阶滑模控制应用","authors":"Y. Parali, E. M. Jafarov","doi":"10.1109/RASM.2015.7154655","DOIUrl":null,"url":null,"abstract":"In this work higher order sliding mode autopilots are designed for highly maneuverable nonminimum phase missile system. Nonminimum phase nature of tail controlled missiles prevents direct implementation of sliding mode control algorithms. To overcome this difficulty an output redefinition technique is developed. Then higher order sliding mode control algorithms used for autopilot design. Second and third order SMC algorithms are tried on missile system that ideally has relative degree of two. It is showed that parasitic input-output dynamics that have lower relative degree than ideal input-output dynamics have disruptive effect on control performance. Solution is found by increasing of order of the controller and generating control signal as derivative of input. Finally adaptation schemes are applied to control algorithms to reduce chattering and increase convergence rate. Results of numerical simulation runs are given to show the effectiveness of the proposed control applications.","PeriodicalId":297041,"journal":{"name":"2015 International Workshop on Recent Advances in Sliding Modes (RASM)","volume":"505 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Higher order sliding mode control applications with output redefinition for nonminimum phase missile system\",\"authors\":\"Y. Parali, E. M. Jafarov\",\"doi\":\"10.1109/RASM.2015.7154655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work higher order sliding mode autopilots are designed for highly maneuverable nonminimum phase missile system. Nonminimum phase nature of tail controlled missiles prevents direct implementation of sliding mode control algorithms. To overcome this difficulty an output redefinition technique is developed. Then higher order sliding mode control algorithms used for autopilot design. Second and third order SMC algorithms are tried on missile system that ideally has relative degree of two. It is showed that parasitic input-output dynamics that have lower relative degree than ideal input-output dynamics have disruptive effect on control performance. Solution is found by increasing of order of the controller and generating control signal as derivative of input. Finally adaptation schemes are applied to control algorithms to reduce chattering and increase convergence rate. Results of numerical simulation runs are given to show the effectiveness of the proposed control applications.\",\"PeriodicalId\":297041,\"journal\":{\"name\":\"2015 International Workshop on Recent Advances in Sliding Modes (RASM)\",\"volume\":\"505 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Workshop on Recent Advances in Sliding Modes (RASM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RASM.2015.7154655\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Workshop on Recent Advances in Sliding Modes (RASM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RASM.2015.7154655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Higher order sliding mode control applications with output redefinition for nonminimum phase missile system
In this work higher order sliding mode autopilots are designed for highly maneuverable nonminimum phase missile system. Nonminimum phase nature of tail controlled missiles prevents direct implementation of sliding mode control algorithms. To overcome this difficulty an output redefinition technique is developed. Then higher order sliding mode control algorithms used for autopilot design. Second and third order SMC algorithms are tried on missile system that ideally has relative degree of two. It is showed that parasitic input-output dynamics that have lower relative degree than ideal input-output dynamics have disruptive effect on control performance. Solution is found by increasing of order of the controller and generating control signal as derivative of input. Finally adaptation schemes are applied to control algorithms to reduce chattering and increase convergence rate. Results of numerical simulation runs are given to show the effectiveness of the proposed control applications.