LIBOR促使分位数飞跃:分位数衍生品的机器学习

Maxime Bergeron, Ryan Ferguson, V. Lucic, Ivan Sergienko
{"title":"LIBOR促使分位数飞跃:分位数衍生品的机器学习","authors":"Maxime Bergeron, Ryan Ferguson, V. Lucic, Ivan Sergienko","doi":"10.2139/ssrn.3882160","DOIUrl":null,"url":null,"abstract":"Inspired by initially proposed IBOR fallback mechanisms, we show how deep learning can be used to quickly and accurately compute the {expected median} of a time series at future inference dates with varying amounts of observed data. While the IBOR fallback spreads were ultimately fixed, the technique outlined here showcases the ability of neural networks to tackle financial problems over seemingly impossibly large domains.","PeriodicalId":251522,"journal":{"name":"Risk Management & Analysis in Financial Institutions eJournal","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LIBOR Prompts Quantile Leap: Machine Learning for Quantile Derivatives\",\"authors\":\"Maxime Bergeron, Ryan Ferguson, V. Lucic, Ivan Sergienko\",\"doi\":\"10.2139/ssrn.3882160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inspired by initially proposed IBOR fallback mechanisms, we show how deep learning can be used to quickly and accurately compute the {expected median} of a time series at future inference dates with varying amounts of observed data. While the IBOR fallback spreads were ultimately fixed, the technique outlined here showcases the ability of neural networks to tackle financial problems over seemingly impossibly large domains.\",\"PeriodicalId\":251522,\"journal\":{\"name\":\"Risk Management & Analysis in Financial Institutions eJournal\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Risk Management & Analysis in Financial Institutions eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3882160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Risk Management & Analysis in Financial Institutions eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3882160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

受最初提出的IBOR回退机制的启发,我们展示了如何使用深度学习在具有不同观测数据量的未来推断日期快速准确地计算时间序列的{预期中位数}。虽然IBOR的回退点差最终得到了解决,但这里概述的技术展示了神经网络在看似不可能的大领域解决金融问题的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LIBOR Prompts Quantile Leap: Machine Learning for Quantile Derivatives
Inspired by initially proposed IBOR fallback mechanisms, we show how deep learning can be used to quickly and accurately compute the {expected median} of a time series at future inference dates with varying amounts of observed data. While the IBOR fallback spreads were ultimately fixed, the technique outlined here showcases the ability of neural networks to tackle financial problems over seemingly impossibly large domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
XVA Estimates with Empirical Martingale Simulation Marginals Versus Copulas: Which Account For More Model Risk In Multivariate Risk Forecasting? Sensitivities-Based Method and Expected Shortfall for Market Risk Under FRTB and Its Impact on Options Risk Capital A 2-Factor model for inclusion of Voluntary Termination Risk in Automotive Retail Loan Portfolios Lessons from Estimating the Average Option-implied Volatility Term Structure for the Spanish Banking Sector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1