使用强类型遗传编程,结合技术和情绪分析的算法交易

Eva Christodoulaki, Michael Kampouridis
{"title":"使用强类型遗传编程,结合技术和情绪分析的算法交易","authors":"Eva Christodoulaki, Michael Kampouridis","doi":"10.1109/CEC55065.2022.9870240","DOIUrl":null,"url":null,"abstract":"Algorithmic trading has become an increasingly thriving research area and a lot of focus has been given on indicators from technical and sentiment analysis. In this paper, we examine the advantages of combining features from both analyses. To do this, we use two different genetic programming algorithms (GP). The first algorithm allows trees to contain technical and/or sentiment analysis indicators without any con-straints. The second algorithm introduces technical and sentiment analysis types through a strongly typed GP, whereby one branch of a given tree contains only technical analysis indicators and another branch of the same tree contains only sentiment analysis features. This allows for better exploration and exploitation of the search space of the indicators. We perform experiments on 10 international stocks and compare the above two GPs' performances. Our goal is to demonstrate that the combination of the indicators leads to improved financial performance. Our results show that the strongly typed GP is able to rank first in terms of Sharpe ratio and statistically outperform all other algorithms in terms of rate of return.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"U sing strongly typed genetic programming to combine technical and sentiment analysis for algorithmic trading\",\"authors\":\"Eva Christodoulaki, Michael Kampouridis\",\"doi\":\"10.1109/CEC55065.2022.9870240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Algorithmic trading has become an increasingly thriving research area and a lot of focus has been given on indicators from technical and sentiment analysis. In this paper, we examine the advantages of combining features from both analyses. To do this, we use two different genetic programming algorithms (GP). The first algorithm allows trees to contain technical and/or sentiment analysis indicators without any con-straints. The second algorithm introduces technical and sentiment analysis types through a strongly typed GP, whereby one branch of a given tree contains only technical analysis indicators and another branch of the same tree contains only sentiment analysis features. This allows for better exploration and exploitation of the search space of the indicators. We perform experiments on 10 international stocks and compare the above two GPs' performances. Our goal is to demonstrate that the combination of the indicators leads to improved financial performance. Our results show that the strongly typed GP is able to rank first in terms of Sharpe ratio and statistically outperform all other algorithms in terms of rate of return.\",\"PeriodicalId\":153241,\"journal\":{\"name\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC55065.2022.9870240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC55065.2022.9870240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

算法交易已经成为一个日益繁荣的研究领域,技术和情绪分析的指标已经得到了很多关注。在本文中,我们研究了结合两种分析的特征的优点。为此,我们使用了两种不同的遗传规划算法(GP)。第一种算法允许树在没有任何约束的情况下包含技术和/或情感分析指标。第二种算法通过强类型GP引入技术和情感分析类型,即给定树的一个分支仅包含技术分析指标,同一树的另一个分支仅包含情感分析特征。这样可以更好地探索和利用指标的搜索空间。我们对10只国际股票进行了实验,比较了上述两位gp的业绩。我们的目标是证明这些指标的结合可以改善财务业绩。我们的结果表明,强类型GP能够在夏普比率方面排名第一,并且在统计回报率方面优于所有其他算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
U sing strongly typed genetic programming to combine technical and sentiment analysis for algorithmic trading
Algorithmic trading has become an increasingly thriving research area and a lot of focus has been given on indicators from technical and sentiment analysis. In this paper, we examine the advantages of combining features from both analyses. To do this, we use two different genetic programming algorithms (GP). The first algorithm allows trees to contain technical and/or sentiment analysis indicators without any con-straints. The second algorithm introduces technical and sentiment analysis types through a strongly typed GP, whereby one branch of a given tree contains only technical analysis indicators and another branch of the same tree contains only sentiment analysis features. This allows for better exploration and exploitation of the search space of the indicators. We perform experiments on 10 international stocks and compare the above two GPs' performances. Our goal is to demonstrate that the combination of the indicators leads to improved financial performance. Our results show that the strongly typed GP is able to rank first in terms of Sharpe ratio and statistically outperform all other algorithms in terms of rate of return.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impacts of Single-objective Landscapes on Multi-objective Optimization Cooperative Multi-objective Topology Optimization Using Clustering and Metamodeling Global and Local Area Coverage Path Planner for a Reconfigurable Robot A New Integer Linear Program and A Grouping Genetic Algorithm with Controlled Gene Transmission for Joint Order Batching and Picking Routing Problem Test Case Prioritization and Reduction Using Hybrid Quantum-behaved Particle Swarm Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1