带分流板圆柱定常流致旋转响应的数值研究

Dan pang, Huili Xi, Zhongbing Zhou, G. Tang, Lin Lu
{"title":"带分流板圆柱定常流致旋转响应的数值研究","authors":"Dan pang, Huili Xi, Zhongbing Zhou, G. Tang, Lin Lu","doi":"10.1115/omae2019-95584","DOIUrl":null,"url":null,"abstract":"\n This article presents numerical results of flow-induced rotary oscillation of a circular cylinder with rigid splitter plate in steady flow. Different from the previous examinations with freely rotatable assembly which mainly considered linear restoring force, the rotary oscillation of the structure in this work is modelled by a Duffing oscillator with both linear and nonlinear restoring force, denoted by dimensional k and ε, respectively. Numerical simulations were carried out for various reduced velocities Ur ∈ [9 to 15] and ε ∈ [0 to 20] at a relatively low Reynolds number. Our previous investigations of a purely linear oscillator (i.e., ε = 0) show that the equilibrium position of the rotary oscillation is not parallel to the free stream as the reduced velocity exceeds a critical value, that is, bifurcation occurs. The present numerical studies suggest that, for a specific reduced velocity Ur, the increase in the nonlinear stiffness ε can eliminate the undesirable bifurcation. The numerical results also suggest that both odd and even-number lift frequency components appear for bifurcate cases, while only odd-number lift frequencies are observed for non-bifurcate cases. The dynamic mode decompositions for the wake flow corresponding to each lift frequency are presented.","PeriodicalId":345141,"journal":{"name":"Volume 2: CFD and FSI","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Investigation of Steady Flow-Induced Rotary Response of Circular Cylinder With Splitter Plate\",\"authors\":\"Dan pang, Huili Xi, Zhongbing Zhou, G. Tang, Lin Lu\",\"doi\":\"10.1115/omae2019-95584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This article presents numerical results of flow-induced rotary oscillation of a circular cylinder with rigid splitter plate in steady flow. Different from the previous examinations with freely rotatable assembly which mainly considered linear restoring force, the rotary oscillation of the structure in this work is modelled by a Duffing oscillator with both linear and nonlinear restoring force, denoted by dimensional k and ε, respectively. Numerical simulations were carried out for various reduced velocities Ur ∈ [9 to 15] and ε ∈ [0 to 20] at a relatively low Reynolds number. Our previous investigations of a purely linear oscillator (i.e., ε = 0) show that the equilibrium position of the rotary oscillation is not parallel to the free stream as the reduced velocity exceeds a critical value, that is, bifurcation occurs. The present numerical studies suggest that, for a specific reduced velocity Ur, the increase in the nonlinear stiffness ε can eliminate the undesirable bifurcation. The numerical results also suggest that both odd and even-number lift frequency components appear for bifurcate cases, while only odd-number lift frequencies are observed for non-bifurcate cases. The dynamic mode decompositions for the wake flow corresponding to each lift frequency are presented.\",\"PeriodicalId\":345141,\"journal\":{\"name\":\"Volume 2: CFD and FSI\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: CFD and FSI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/omae2019-95584\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: CFD and FSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2019-95584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了带刚性分流板的圆柱在定常流动中流致旋转振动的数值结果。与以往主要考虑线性恢复力的可自由旋转组件的研究不同,本研究采用具有线性和非线性恢复力的Duffing振荡器来模拟结构的旋转振动,分别用k和ε表示。在较低雷诺数下,对不同的降速Ur∈[9 ~ 15],ε∈[0 ~ 20]进行了数值模拟。我们以前对纯线性振荡器(即ε = 0)的研究表明,当减速速度超过临界值时,旋转振荡的平衡位置不平行于自由流,即发生分岔。目前的数值研究表明,对于特定的降低速度Ur,增加非线性刚度ε可以消除不良的分岔。数值结果还表明,在分岔情况下,升力频率分量同时出现奇数和偶数,而在非分岔情况下,只观察到奇数升力频率。给出了不同升力频率下尾流的动态模态分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical Investigation of Steady Flow-Induced Rotary Response of Circular Cylinder With Splitter Plate
This article presents numerical results of flow-induced rotary oscillation of a circular cylinder with rigid splitter plate in steady flow. Different from the previous examinations with freely rotatable assembly which mainly considered linear restoring force, the rotary oscillation of the structure in this work is modelled by a Duffing oscillator with both linear and nonlinear restoring force, denoted by dimensional k and ε, respectively. Numerical simulations were carried out for various reduced velocities Ur ∈ [9 to 15] and ε ∈ [0 to 20] at a relatively low Reynolds number. Our previous investigations of a purely linear oscillator (i.e., ε = 0) show that the equilibrium position of the rotary oscillation is not parallel to the free stream as the reduced velocity exceeds a critical value, that is, bifurcation occurs. The present numerical studies suggest that, for a specific reduced velocity Ur, the increase in the nonlinear stiffness ε can eliminate the undesirable bifurcation. The numerical results also suggest that both odd and even-number lift frequency components appear for bifurcate cases, while only odd-number lift frequencies are observed for non-bifurcate cases. The dynamic mode decompositions for the wake flow corresponding to each lift frequency are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development and Validation of CFD Analysis Procedure for Predicting Wind Load on Commercial Ships Multi-Phase Simulation of Droplet Trajectories of Wave-Impact Sea Spray Over a Vessel Numerical Study of Breaking Waves and Associated Wave Forces on a Jacket Substructure for Offshore Wind Turbines Numerical Simulation of Trim Optimization on Resistance Performance Based on CFD Method Fundamental CFD Study on the Hydrodynamic Performance of the DARPA SUBOFF Submarine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1