Dan pang, Huili Xi, Zhongbing Zhou, G. Tang, Lin Lu
{"title":"带分流板圆柱定常流致旋转响应的数值研究","authors":"Dan pang, Huili Xi, Zhongbing Zhou, G. Tang, Lin Lu","doi":"10.1115/omae2019-95584","DOIUrl":null,"url":null,"abstract":"\n This article presents numerical results of flow-induced rotary oscillation of a circular cylinder with rigid splitter plate in steady flow. Different from the previous examinations with freely rotatable assembly which mainly considered linear restoring force, the rotary oscillation of the structure in this work is modelled by a Duffing oscillator with both linear and nonlinear restoring force, denoted by dimensional k and ε, respectively. Numerical simulations were carried out for various reduced velocities Ur ∈ [9 to 15] and ε ∈ [0 to 20] at a relatively low Reynolds number. Our previous investigations of a purely linear oscillator (i.e., ε = 0) show that the equilibrium position of the rotary oscillation is not parallel to the free stream as the reduced velocity exceeds a critical value, that is, bifurcation occurs. The present numerical studies suggest that, for a specific reduced velocity Ur, the increase in the nonlinear stiffness ε can eliminate the undesirable bifurcation. The numerical results also suggest that both odd and even-number lift frequency components appear for bifurcate cases, while only odd-number lift frequencies are observed for non-bifurcate cases. The dynamic mode decompositions for the wake flow corresponding to each lift frequency are presented.","PeriodicalId":345141,"journal":{"name":"Volume 2: CFD and FSI","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Investigation of Steady Flow-Induced Rotary Response of Circular Cylinder With Splitter Plate\",\"authors\":\"Dan pang, Huili Xi, Zhongbing Zhou, G. Tang, Lin Lu\",\"doi\":\"10.1115/omae2019-95584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This article presents numerical results of flow-induced rotary oscillation of a circular cylinder with rigid splitter plate in steady flow. Different from the previous examinations with freely rotatable assembly which mainly considered linear restoring force, the rotary oscillation of the structure in this work is modelled by a Duffing oscillator with both linear and nonlinear restoring force, denoted by dimensional k and ε, respectively. Numerical simulations were carried out for various reduced velocities Ur ∈ [9 to 15] and ε ∈ [0 to 20] at a relatively low Reynolds number. Our previous investigations of a purely linear oscillator (i.e., ε = 0) show that the equilibrium position of the rotary oscillation is not parallel to the free stream as the reduced velocity exceeds a critical value, that is, bifurcation occurs. The present numerical studies suggest that, for a specific reduced velocity Ur, the increase in the nonlinear stiffness ε can eliminate the undesirable bifurcation. The numerical results also suggest that both odd and even-number lift frequency components appear for bifurcate cases, while only odd-number lift frequencies are observed for non-bifurcate cases. The dynamic mode decompositions for the wake flow corresponding to each lift frequency are presented.\",\"PeriodicalId\":345141,\"journal\":{\"name\":\"Volume 2: CFD and FSI\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: CFD and FSI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/omae2019-95584\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: CFD and FSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2019-95584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical Investigation of Steady Flow-Induced Rotary Response of Circular Cylinder With Splitter Plate
This article presents numerical results of flow-induced rotary oscillation of a circular cylinder with rigid splitter plate in steady flow. Different from the previous examinations with freely rotatable assembly which mainly considered linear restoring force, the rotary oscillation of the structure in this work is modelled by a Duffing oscillator with both linear and nonlinear restoring force, denoted by dimensional k and ε, respectively. Numerical simulations were carried out for various reduced velocities Ur ∈ [9 to 15] and ε ∈ [0 to 20] at a relatively low Reynolds number. Our previous investigations of a purely linear oscillator (i.e., ε = 0) show that the equilibrium position of the rotary oscillation is not parallel to the free stream as the reduced velocity exceeds a critical value, that is, bifurcation occurs. The present numerical studies suggest that, for a specific reduced velocity Ur, the increase in the nonlinear stiffness ε can eliminate the undesirable bifurcation. The numerical results also suggest that both odd and even-number lift frequency components appear for bifurcate cases, while only odd-number lift frequencies are observed for non-bifurcate cases. The dynamic mode decompositions for the wake flow corresponding to each lift frequency are presented.