使用边缘云联合学习的自动驾驶汽车的主动内容缓存

Subina Khanal, K. Thar, M. Hossain, E. Huh
{"title":"使用边缘云联合学习的自动驾驶汽车的主动内容缓存","authors":"Subina Khanal, K. Thar, M. Hossain, E. Huh","doi":"10.1109/ICUFN49451.2021.9528638","DOIUrl":null,"url":null,"abstract":"Proactive content caching in self-driving cars poses several challenges, particularly because of the dynamic nature of content popularity, heterogeneity in user preferences, and privacy issues for data sharing. To tackle these issues, in this paper, we study the significance of proactive content caching strategy in self-driving cars for optimizing content retrieval cost and quality-of-experience (QoE) with the edge cloud infrastructure. To that end, we propose a low-complexity content popularity prediction mechanism in a federated setting where we extract local content popularity patterns in the self-driving cars using long short-term memory (LSTM)-based prediction mechanism. Then, we leverage the privacy-preserving distributed model training paradigm of Federated Learning (FL) to create a global model by applying the Federated Averaging (FedAvg) algorithm on local LSTM models to create a regional content popularity prediction model. With extensive simulations on real-world datasets, we show the obtained global model helps to improve the local cache hit ratio, cache space utilization, and correspondingly minimize latency overhead at the self-driving cars.","PeriodicalId":318542,"journal":{"name":"2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Proactive Content Caching at Self-Driving Car Using Federated Learning with Edge Cloud\",\"authors\":\"Subina Khanal, K. Thar, M. Hossain, E. Huh\",\"doi\":\"10.1109/ICUFN49451.2021.9528638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proactive content caching in self-driving cars poses several challenges, particularly because of the dynamic nature of content popularity, heterogeneity in user preferences, and privacy issues for data sharing. To tackle these issues, in this paper, we study the significance of proactive content caching strategy in self-driving cars for optimizing content retrieval cost and quality-of-experience (QoE) with the edge cloud infrastructure. To that end, we propose a low-complexity content popularity prediction mechanism in a federated setting where we extract local content popularity patterns in the self-driving cars using long short-term memory (LSTM)-based prediction mechanism. Then, we leverage the privacy-preserving distributed model training paradigm of Federated Learning (FL) to create a global model by applying the Federated Averaging (FedAvg) algorithm on local LSTM models to create a regional content popularity prediction model. With extensive simulations on real-world datasets, we show the obtained global model helps to improve the local cache hit ratio, cache space utilization, and correspondingly minimize latency overhead at the self-driving cars.\",\"PeriodicalId\":318542,\"journal\":{\"name\":\"2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICUFN49451.2021.9528638\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUFN49451.2021.9528638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

自动驾驶汽车的主动内容缓存带来了一些挑战,特别是因为内容受欢迎程度的动态性、用户偏好的异质性以及数据共享的隐私问题。为了解决这些问题,本文研究了主动内容缓存策略在自动驾驶汽车中利用边缘云基础设施优化内容检索成本和体验质量(QoE)的意义。为此,我们提出了一种在联邦环境下的低复杂度内容流行度预测机制,我们使用基于长短期记忆(LSTM)的预测机制提取自动驾驶汽车中的本地内容流行度模式。然后,我们利用联邦学习(FL)的隐私保护分布式模型训练范式,通过在局部LSTM模型上应用联邦平均(FedAvg)算法创建区域内容流行度预测模型来创建全局模型。通过对真实世界数据集的广泛模拟,我们证明了获得的全局模型有助于提高本地缓存命中率,缓存空间利用率,并相应地最小化自动驾驶汽车的延迟开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Proactive Content Caching at Self-Driving Car Using Federated Learning with Edge Cloud
Proactive content caching in self-driving cars poses several challenges, particularly because of the dynamic nature of content popularity, heterogeneity in user preferences, and privacy issues for data sharing. To tackle these issues, in this paper, we study the significance of proactive content caching strategy in self-driving cars for optimizing content retrieval cost and quality-of-experience (QoE) with the edge cloud infrastructure. To that end, we propose a low-complexity content popularity prediction mechanism in a federated setting where we extract local content popularity patterns in the self-driving cars using long short-term memory (LSTM)-based prediction mechanism. Then, we leverage the privacy-preserving distributed model training paradigm of Federated Learning (FL) to create a global model by applying the Federated Averaging (FedAvg) algorithm on local LSTM models to create a regional content popularity prediction model. With extensive simulations on real-world datasets, we show the obtained global model helps to improve the local cache hit ratio, cache space utilization, and correspondingly minimize latency overhead at the self-driving cars.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Augmented Reality Musical Service Part 1 for Non-face-to-face Watching by Multiple Audiences Performance Analysis of Cell-Free mmWave Massive MIMO with Low-Resolution DAC Quantization Efficient Task Offloading for MEC-Enabled Vehicular Networks: A Non-Cooperative Game Theoretic Approach High Efficiency & Low Area DC-DC Buck Converter with the Digital Feedback Loop for the Wireless Applications Interesting Projects To Strenghthen DSP Teaching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1