一种后期接受超启发式模糊自适应参数控制

Warren G. Jackson, E. Özcan, R. John
{"title":"一种后期接受超启发式模糊自适应参数控制","authors":"Warren G. Jackson, E. Özcan, R. John","doi":"10.1109/UKCI.2014.6930167","DOIUrl":null,"url":null,"abstract":"A traditional iterative selection hyper-heuristic which manages a set of low level heuristics relies on two core components, a method for selecting a heuristic to apply at a given point, and a method to decide whether or not to accept the result of the heuristic application. In this paper, we present an initial study of a fuzzy system to control the list-size parameter of late-acceptance move acceptance method as a selection hyper-heuristic component. The performance of the fuzzy controlled selection hyper-heuristic is compared to its fixed parameter version and the best hyper-heuristic from a competition on the MAX-SAT problem domain. The results illustrate that a fuzzy control system can potentially be effective within a hyper-heuristic improving its performance.","PeriodicalId":315044,"journal":{"name":"2014 14th UK Workshop on Computational Intelligence (UKCI)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Fuzzy adaptive parameter control of a late acceptance hyper-heuristic\",\"authors\":\"Warren G. Jackson, E. Özcan, R. John\",\"doi\":\"10.1109/UKCI.2014.6930167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A traditional iterative selection hyper-heuristic which manages a set of low level heuristics relies on two core components, a method for selecting a heuristic to apply at a given point, and a method to decide whether or not to accept the result of the heuristic application. In this paper, we present an initial study of a fuzzy system to control the list-size parameter of late-acceptance move acceptance method as a selection hyper-heuristic component. The performance of the fuzzy controlled selection hyper-heuristic is compared to its fixed parameter version and the best hyper-heuristic from a competition on the MAX-SAT problem domain. The results illustrate that a fuzzy control system can potentially be effective within a hyper-heuristic improving its performance.\",\"PeriodicalId\":315044,\"journal\":{\"name\":\"2014 14th UK Workshop on Computational Intelligence (UKCI)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 14th UK Workshop on Computational Intelligence (UKCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UKCI.2014.6930167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 14th UK Workshop on Computational Intelligence (UKCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UKCI.2014.6930167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

传统的迭代选择超启发式算法管理一组低级启发式算法,它依赖于两个核心组件:在给定点选择启发式算法的方法,以及决定是否接受启发式应用结果的方法。在本文中,我们提出了一个模糊系统来控制列表大小参数的延迟接受移动接受方法作为一个选择超启发式组件。在MAX-SAT问题域上,将模糊控制选择超启发式算法的性能与固定参数版本和最佳超启发式算法进行了比较。结果表明,模糊控制系统可以在超启发式中有效地提高其性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fuzzy adaptive parameter control of a late acceptance hyper-heuristic
A traditional iterative selection hyper-heuristic which manages a set of low level heuristics relies on two core components, a method for selecting a heuristic to apply at a given point, and a method to decide whether or not to accept the result of the heuristic application. In this paper, we present an initial study of a fuzzy system to control the list-size parameter of late-acceptance move acceptance method as a selection hyper-heuristic component. The performance of the fuzzy controlled selection hyper-heuristic is compared to its fixed parameter version and the best hyper-heuristic from a competition on the MAX-SAT problem domain. The results illustrate that a fuzzy control system can potentially be effective within a hyper-heuristic improving its performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PermGA algorithm for a sequential optimal space filling DoE framework Modeling neural plasticity in echo state networks for time series prediction Hybridisation of decomposition and GRASP for combinatorial multiobjective optimisation Adaptive mutation in dynamic environments Automatic image annotation with long distance spatial-context
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1