{"title":"基于超宽带人工智能床垫的新型睡眠呼吸暂停检测","authors":"Chiapin Wang, Jen-Hau Chan, Shih-Hau Fang, Ho-Ti Cheng, Yeh-Liang Hsu","doi":"10.1109/AICAS.2019.8771598","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel sleep apnea identification system by adopting a sleep breathing monitoring mattress which utilizes the ultra-wideband (UWB) physiological sensing technique. Unlike traditional methods which need wearable devices and electrical equipment connected to patients, the proposed system detects apnea in a non-conscious and non-contact way by using UWB sensors. The proposed system is built by a machine learning technique in the offline stage, and detects apnea in the online stage by using our designed apnea detection algorithm. The experimental results illustrate that the proposed apnea identification system efficiently detects sleep apnea without diagnoses undertaken at hospitals.","PeriodicalId":273095,"journal":{"name":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Novel Sleep Apnea Detection Based on UWB Artificial Intelligence Mattress\",\"authors\":\"Chiapin Wang, Jen-Hau Chan, Shih-Hau Fang, Ho-Ti Cheng, Yeh-Liang Hsu\",\"doi\":\"10.1109/AICAS.2019.8771598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel sleep apnea identification system by adopting a sleep breathing monitoring mattress which utilizes the ultra-wideband (UWB) physiological sensing technique. Unlike traditional methods which need wearable devices and electrical equipment connected to patients, the proposed system detects apnea in a non-conscious and non-contact way by using UWB sensors. The proposed system is built by a machine learning technique in the offline stage, and detects apnea in the online stage by using our designed apnea detection algorithm. The experimental results illustrate that the proposed apnea identification system efficiently detects sleep apnea without diagnoses undertaken at hospitals.\",\"PeriodicalId\":273095,\"journal\":{\"name\":\"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAS.2019.8771598\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS.2019.8771598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Novel Sleep Apnea Detection Based on UWB Artificial Intelligence Mattress
In this paper, we propose a novel sleep apnea identification system by adopting a sleep breathing monitoring mattress which utilizes the ultra-wideband (UWB) physiological sensing technique. Unlike traditional methods which need wearable devices and electrical equipment connected to patients, the proposed system detects apnea in a non-conscious and non-contact way by using UWB sensors. The proposed system is built by a machine learning technique in the offline stage, and detects apnea in the online stage by using our designed apnea detection algorithm. The experimental results illustrate that the proposed apnea identification system efficiently detects sleep apnea without diagnoses undertaken at hospitals.