数据中心内的超谐波——发射与传播

J. Sutaria, Á. Espín-Delgado, S. Rönnberg
{"title":"数据中心内的超谐波——发射与传播","authors":"J. Sutaria, Á. Espín-Delgado, S. Rönnberg","doi":"10.1109/ICHQP53011.2022.9808561","DOIUrl":null,"url":null,"abstract":"The reliability of the electrical and cooling systems is of utmost importance for the uninterrupted operation of the data center information technology (IT) load. The electrical distribution of the data center includes many subsystems starting with the utility and building transformers, uninterruptible power supply (UPS), power distribution units (PDUs), and power supplies ultimately powering the fans and the internal components of IT equipment. The various converters in data centers emit switching frequency residue due to PWM (pulse width modulation) techniques. The switching frequency range falls within the supraharmonic range, i.e., 2 to 150 kHz. This paper aims to show, with measurements, the different types of supraharmonic emissions measured in the data center, and the difference between their maximum and average magnitudes. The paper shows a method to identify the equipment emitting supraharmonic emission and possible disturbances caused by it. The paper traces the propagation of supraharmonic emission from the source through the transformer to the grid. Lastly, a comparison of measurements is made with the compatibility levels given by standard IEC 61000-2-2.","PeriodicalId":249133,"journal":{"name":"2022 20th International Conference on Harmonics & Quality of Power (ICHQP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Supraharmonics within a Datacenter-Emission and Propagation\",\"authors\":\"J. Sutaria, Á. Espín-Delgado, S. Rönnberg\",\"doi\":\"10.1109/ICHQP53011.2022.9808561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The reliability of the electrical and cooling systems is of utmost importance for the uninterrupted operation of the data center information technology (IT) load. The electrical distribution of the data center includes many subsystems starting with the utility and building transformers, uninterruptible power supply (UPS), power distribution units (PDUs), and power supplies ultimately powering the fans and the internal components of IT equipment. The various converters in data centers emit switching frequency residue due to PWM (pulse width modulation) techniques. The switching frequency range falls within the supraharmonic range, i.e., 2 to 150 kHz. This paper aims to show, with measurements, the different types of supraharmonic emissions measured in the data center, and the difference between their maximum and average magnitudes. The paper shows a method to identify the equipment emitting supraharmonic emission and possible disturbances caused by it. The paper traces the propagation of supraharmonic emission from the source through the transformer to the grid. Lastly, a comparison of measurements is made with the compatibility levels given by standard IEC 61000-2-2.\",\"PeriodicalId\":249133,\"journal\":{\"name\":\"2022 20th International Conference on Harmonics & Quality of Power (ICHQP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 20th International Conference on Harmonics & Quality of Power (ICHQP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICHQP53011.2022.9808561\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 20th International Conference on Harmonics & Quality of Power (ICHQP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHQP53011.2022.9808561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

电气和冷却系统的可靠性对于数据中心信息技术(IT)负载的不间断运行至关重要。数据中心的配电包括许多子系统,从公用事业和建筑开始,变压器、不间断电源(UPS)、配电单元(pdu)和最终为风扇和IT设备内部组件供电的电源。数据中心中的各种变换器由于脉宽调制技术而产生开关频率残留。开关频率范围在超谐波范围内,即2至150khz。本文旨在通过测量显示数据中心测量到的不同类型的超谐波发射,以及它们的最大和平均量级之间的差异。本文给出了一种识别超谐波发射设备及其可能引起的干扰的方法。本文跟踪了超谐波发射从源源经变压器到电网的传播过程。最后,将测量结果与IEC 61000-2-2标准给出的兼容等级进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Supraharmonics within a Datacenter-Emission and Propagation
The reliability of the electrical and cooling systems is of utmost importance for the uninterrupted operation of the data center information technology (IT) load. The electrical distribution of the data center includes many subsystems starting with the utility and building transformers, uninterruptible power supply (UPS), power distribution units (PDUs), and power supplies ultimately powering the fans and the internal components of IT equipment. The various converters in data centers emit switching frequency residue due to PWM (pulse width modulation) techniques. The switching frequency range falls within the supraharmonic range, i.e., 2 to 150 kHz. This paper aims to show, with measurements, the different types of supraharmonic emissions measured in the data center, and the difference between their maximum and average magnitudes. The paper shows a method to identify the equipment emitting supraharmonic emission and possible disturbances caused by it. The paper traces the propagation of supraharmonic emission from the source through the transformer to the grid. Lastly, a comparison of measurements is made with the compatibility levels given by standard IEC 61000-2-2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Voltage-Current Ratio Difference Method: Recommended for IEEE Standard 1547 to Determine the Customer Harmonic Contribution Operation of a Distributed Generation Plant in a Power Supply System with Non-linear and Asymmetric Load Trend analysis for power quality parameters based on long-term measurement campaigns Power Quality Data Platform for Analysis and Location of Voltage Dips: a Preliminary Study Classification of Scalogram Signatures for Power Quality Disturbances Using Transfer Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1