涡轮叶片前缘气膜异形孔冷却内部流动效应的CFD评估

Christopher C. Easterby, J. Moore, D. Bogard
{"title":"涡轮叶片前缘气膜异形孔冷却内部流动效应的CFD评估","authors":"Christopher C. Easterby, J. Moore, D. Bogard","doi":"10.1115/gt2021-59780","DOIUrl":null,"url":null,"abstract":"\n In gas turbine engines, the highest heat loads occur at the leading-edge areas of turbine blades and vanes. To protect the blades and vanes, a “showerhead” configuration of film cooling holes is often used for this location, in which several rows of holes are configured closely together to maximize film coverage. Typically, these film cooling holes are fed by impingement cooling jets, helping to cool the leading edge internally, but also changing the internal flow field. The effects of these internal flow fields on film cooling are not well known, and experimental research is very limited in its ability to analyze them. Because of this, computational fluid dynamic (CFD) simulations using RANS were used as a way to analyze these internal flow fields. To isolate the effects of the impingement jet, results were compared to a pseudo-plenum internal feed, and rotation in the hole was found to be a key factor in performance. Computational results from both coolant feed configurations were compared to experimental results for the same configurations. The CFD RANS results were found to follow the same trends as the experimental results for both the impingement-fed and plenum-fed cases, suggesting that RANS is able to accurately model some of the important physics associated with leading-edge film cooling.","PeriodicalId":204099,"journal":{"name":"Volume 5A: Heat Transfer — Combustors; Film Cooling","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"CFD Evaluation of Internal Flow Effects on Turbine Blade Leading-Edge Film Cooling With Shaped Hole Geometries\",\"authors\":\"Christopher C. Easterby, J. Moore, D. Bogard\",\"doi\":\"10.1115/gt2021-59780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In gas turbine engines, the highest heat loads occur at the leading-edge areas of turbine blades and vanes. To protect the blades and vanes, a “showerhead” configuration of film cooling holes is often used for this location, in which several rows of holes are configured closely together to maximize film coverage. Typically, these film cooling holes are fed by impingement cooling jets, helping to cool the leading edge internally, but also changing the internal flow field. The effects of these internal flow fields on film cooling are not well known, and experimental research is very limited in its ability to analyze them. Because of this, computational fluid dynamic (CFD) simulations using RANS were used as a way to analyze these internal flow fields. To isolate the effects of the impingement jet, results were compared to a pseudo-plenum internal feed, and rotation in the hole was found to be a key factor in performance. Computational results from both coolant feed configurations were compared to experimental results for the same configurations. The CFD RANS results were found to follow the same trends as the experimental results for both the impingement-fed and plenum-fed cases, suggesting that RANS is able to accurately model some of the important physics associated with leading-edge film cooling.\",\"PeriodicalId\":204099,\"journal\":{\"name\":\"Volume 5A: Heat Transfer — Combustors; Film Cooling\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 5A: Heat Transfer — Combustors; Film Cooling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/gt2021-59780\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5A: Heat Transfer — Combustors; Film Cooling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2021-59780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在燃气涡轮发动机中,最大的热负荷发生在涡轮叶片和叶片的前缘区域。为了保护叶片和叶片,膜冷却孔的“淋浴头”配置通常用于该位置,其中几排孔紧密地配置在一起,以最大限度地提高膜覆盖率。通常,这些膜冷却孔由撞击冷却射流供给,有助于在内部冷却前缘,但也会改变内部流场。这些内部流场对气膜冷却的影响尚不清楚,实验研究在分析它们的能力方面非常有限。因此,使用RANS的计算流体动力学(CFD)模拟被用作分析这些内部流场的一种方法。为了隔离冲击射流的影响,将结果与伪静压内进给进行了比较,发现孔内旋转是影响性能的关键因素。将两种冷却剂供料配置的计算结果与相同配置的实验结果进行了比较。研究发现,CFD RANS结果与撞击式和整流式两种情况下的实验结果都遵循相同的趋势,这表明RANS能够准确地模拟与前缘膜冷却相关的一些重要物理现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CFD Evaluation of Internal Flow Effects on Turbine Blade Leading-Edge Film Cooling With Shaped Hole Geometries
In gas turbine engines, the highest heat loads occur at the leading-edge areas of turbine blades and vanes. To protect the blades and vanes, a “showerhead” configuration of film cooling holes is often used for this location, in which several rows of holes are configured closely together to maximize film coverage. Typically, these film cooling holes are fed by impingement cooling jets, helping to cool the leading edge internally, but also changing the internal flow field. The effects of these internal flow fields on film cooling are not well known, and experimental research is very limited in its ability to analyze them. Because of this, computational fluid dynamic (CFD) simulations using RANS were used as a way to analyze these internal flow fields. To isolate the effects of the impingement jet, results were compared to a pseudo-plenum internal feed, and rotation in the hole was found to be a key factor in performance. Computational results from both coolant feed configurations were compared to experimental results for the same configurations. The CFD RANS results were found to follow the same trends as the experimental results for both the impingement-fed and plenum-fed cases, suggesting that RANS is able to accurately model some of the important physics associated with leading-edge film cooling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Influence of Purge Flow Parameters on Heat Transfer and Film Cooling in Turbine Center Frames Uncertainty Analysis of Film Cooling of Fan-Shaped Holes on a Stator Vane Under Realistic Inlet Conditions Implementation of Vortex Generator and Ramp to Improve Film Cooling Effectiveness on Blade Endwall Coupling of Mainstream Velocity Fluctuations With Plenum Fed Film Cooling Jets An Experimental Study of Turbine Vane Film Cooling Using Endoscope-Based PSP Technique in a Single-Passage Wind Tunnel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1