调制识别的深度体系结构

Nathan E. West, Tim O'Shea
{"title":"调制识别的深度体系结构","authors":"Nathan E. West, Tim O'Shea","doi":"10.1109/DySPAN.2017.7920754","DOIUrl":null,"url":null,"abstract":"We survey the latest advances in machine learning with deep neural networks by applying them to the task of radio modulation recognition. Results show that ratio modulation recognition is not limited by network depth and further work should focus on improving learned synchronization and equalization. Advances in these areas will likely come from novel architectures designed for these tasks or through novel training methods.","PeriodicalId":221877,"journal":{"name":"2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"303","resultStr":"{\"title\":\"Deep architectures for modulation recognition\",\"authors\":\"Nathan E. West, Tim O'Shea\",\"doi\":\"10.1109/DySPAN.2017.7920754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We survey the latest advances in machine learning with deep neural networks by applying them to the task of radio modulation recognition. Results show that ratio modulation recognition is not limited by network depth and further work should focus on improving learned synchronization and equalization. Advances in these areas will likely come from novel architectures designed for these tasks or through novel training methods.\",\"PeriodicalId\":221877,\"journal\":{\"name\":\"2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"303\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DySPAN.2017.7920754\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DySPAN.2017.7920754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 303

摘要

我们通过将深度神经网络应用于无线电调制识别任务来研究机器学习的最新进展。结果表明,比例调制识别不受网络深度的限制,进一步的工作应集中在改进学习同步和均衡。这些领域的进步可能来自为这些任务设计的新架构或通过新的训练方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep architectures for modulation recognition
We survey the latest advances in machine learning with deep neural networks by applying them to the task of radio modulation recognition. Results show that ratio modulation recognition is not limited by network depth and further work should focus on improving learned synchronization and equalization. Advances in these areas will likely come from novel architectures designed for these tasks or through novel training methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Field trial of the 3.5 GHz citizens broadband radio service governed by a spectrum access system (SAS) Design and implementation of the Secondary User-Enhanced Spectrum Sharing (SUESS) radio Enhanced 5G spectrum sharing using a new adaptive NC-OFDM waveform with reconfigurable antennas USRP N210 demonstration of wideband sensing and blind hierarchical modulation classification Joint transmission and cooperative spectrum sensing scheduling optimization in multi-channel dynamic spectrum access networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1