背偏置对晶体管模拟性能的影响

P. Agopian, F. Neves, J. Martino, A. Vandooren, R. Rooyackers, E. Simoen, C. Claeys
{"title":"背偏置对晶体管模拟性能的影响","authors":"P. Agopian, F. Neves, J. Martino, A. Vandooren, R. Rooyackers, E. Simoen, C. Claeys","doi":"10.1109/S3S.2013.6716584","DOIUrl":null,"url":null,"abstract":"In this work the back bias influence on the analog performance of tunnel-FETs is evaluated experimentally for the first time. The analysis of the transconductance, output conductance and intrinsic voltage gain (Av) was performed by comparing the pTFET behavior with a well-known pFinFET that was fabricated using the same process flow. Numerical simulations were also performed in order to explain the pTFET behavior. Although the pTFET shows to be more susceptible to the back bias condition, it also shows to present always a better Av for all bias conditions. The best result in both devices was obtained when the back bias is near 0 V and the Av difference is around 30 dB in favor of pTFET.","PeriodicalId":219932,"journal":{"name":"2013 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)","volume":"24 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Back bias influence on analog performance of pTFET\",\"authors\":\"P. Agopian, F. Neves, J. Martino, A. Vandooren, R. Rooyackers, E. Simoen, C. Claeys\",\"doi\":\"10.1109/S3S.2013.6716584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work the back bias influence on the analog performance of tunnel-FETs is evaluated experimentally for the first time. The analysis of the transconductance, output conductance and intrinsic voltage gain (Av) was performed by comparing the pTFET behavior with a well-known pFinFET that was fabricated using the same process flow. Numerical simulations were also performed in order to explain the pTFET behavior. Although the pTFET shows to be more susceptible to the back bias condition, it also shows to present always a better Av for all bias conditions. The best result in both devices was obtained when the back bias is near 0 V and the Av difference is around 30 dB in favor of pTFET.\",\"PeriodicalId\":219932,\"journal\":{\"name\":\"2013 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)\",\"volume\":\"24 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/S3S.2013.6716584\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/S3S.2013.6716584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文首次通过实验研究了反偏置对隧道场效应管模拟性能的影响。通过将pTFET与使用相同工艺流程制造的著名pFinFET的行为进行比较,分析了跨导、输出导和固有电压增益(Av)。为了解释pTFET的行为,还进行了数值模拟。尽管pTFET显示出更容易受到反向偏置条件的影响,但它也显示出在所有偏置条件下始终呈现更好的Av。当后置偏置接近0 V, Av差约为30 dB时,两种器件的最佳结果都有利于pTFET。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Back bias influence on analog performance of pTFET
In this work the back bias influence on the analog performance of tunnel-FETs is evaluated experimentally for the first time. The analysis of the transconductance, output conductance and intrinsic voltage gain (Av) was performed by comparing the pTFET behavior with a well-known pFinFET that was fabricated using the same process flow. Numerical simulations were also performed in order to explain the pTFET behavior. Although the pTFET shows to be more susceptible to the back bias condition, it also shows to present always a better Av for all bias conditions. The best result in both devices was obtained when the back bias is near 0 V and the Av difference is around 30 dB in favor of pTFET.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Direct point-contact characterization of Bias instability on bare SOI wafers Parallelism and pipelining in ultra low voltage digital circuits Enabling Sub-nW RF circuits through subthreshold leakage management Low power false positive tolerant event detector for seismic sensors Practical process flows for monolithic 3D
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1