使用层次耦合字典学习生成图像属性的零射击识别

Shuang Li, Lichun Wang, Shaofan Wang, Dehui Kong, Baocai Yin
{"title":"使用层次耦合字典学习生成图像属性的零射击识别","authors":"Shuang Li, Lichun Wang, Shaofan Wang, Dehui Kong, Baocai Yin","doi":"10.1145/3469877.3490613","DOIUrl":null,"url":null,"abstract":"Zero-shot learning (ZSL) aims to recognize images from unseen (novel) classes with the training images from seen classes. The attributes of each class is exploited as auxiliary semantic information. Recently most ZSL approaches focus on learning visual-semantic embeddings to transfer knowledge from the seen classes to the unseen classes. However, few works study whether the auxiliary semantic information in the class-level is extensive enough or not for the ZSL task. To tackle such problem, we propose a hierarchical coupled dictionary learning (HCDL) approach to hierarchically align the visual-semantic structures in both the class-level and the image-level. Firstly, the class-level coupled dictionary is trained to establish a basic connection between visual space and semantic space. Then, the image attributes are generated based on the basic connection. Finally, the fine-grained information can be embedded by training the image-level coupled dictionary. Zero-shot recognition is performed in multiple spaces by searching the nearest neighbor class of the unseen image. Experiments on two widely used benchmark datasets show the effectiveness of the proposed approach.","PeriodicalId":210974,"journal":{"name":"ACM Multimedia Asia","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Zero-shot Recognition with Image Attributes Generation using Hierarchical Coupled Dictionary Learning\",\"authors\":\"Shuang Li, Lichun Wang, Shaofan Wang, Dehui Kong, Baocai Yin\",\"doi\":\"10.1145/3469877.3490613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Zero-shot learning (ZSL) aims to recognize images from unseen (novel) classes with the training images from seen classes. The attributes of each class is exploited as auxiliary semantic information. Recently most ZSL approaches focus on learning visual-semantic embeddings to transfer knowledge from the seen classes to the unseen classes. However, few works study whether the auxiliary semantic information in the class-level is extensive enough or not for the ZSL task. To tackle such problem, we propose a hierarchical coupled dictionary learning (HCDL) approach to hierarchically align the visual-semantic structures in both the class-level and the image-level. Firstly, the class-level coupled dictionary is trained to establish a basic connection between visual space and semantic space. Then, the image attributes are generated based on the basic connection. Finally, the fine-grained information can be embedded by training the image-level coupled dictionary. Zero-shot recognition is performed in multiple spaces by searching the nearest neighbor class of the unseen image. Experiments on two widely used benchmark datasets show the effectiveness of the proposed approach.\",\"PeriodicalId\":210974,\"journal\":{\"name\":\"ACM Multimedia Asia\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Multimedia Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3469877.3490613\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Multimedia Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469877.3490613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

零射击学习(Zero-shot learning, ZSL)的目的是利用已见类的训练图像来识别未见(新)类的图像。每个类的属性被用作辅助语义信息。最近,大多数ZSL方法专注于学习视觉语义嵌入,以将知识从可见类转移到不可见类。然而,很少有研究类层面的辅助语义信息是否足够广泛地适用于ZSL任务。为了解决这一问题,我们提出了一种层次耦合字典学习(HCDL)方法,在类级和图像级对视觉语义结构进行层次对齐。首先,训练类级耦合字典,建立视觉空间和语义空间之间的基本联系;然后,根据基本连接生成图像属性。最后,通过训练图像级耦合字典来嵌入细粒度信息。通过搜索未见图像的最近邻类,在多个空间中进行零射击识别。在两个广泛使用的基准数据集上的实验表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Zero-shot Recognition with Image Attributes Generation using Hierarchical Coupled Dictionary Learning
Zero-shot learning (ZSL) aims to recognize images from unseen (novel) classes with the training images from seen classes. The attributes of each class is exploited as auxiliary semantic information. Recently most ZSL approaches focus on learning visual-semantic embeddings to transfer knowledge from the seen classes to the unseen classes. However, few works study whether the auxiliary semantic information in the class-level is extensive enough or not for the ZSL task. To tackle such problem, we propose a hierarchical coupled dictionary learning (HCDL) approach to hierarchically align the visual-semantic structures in both the class-level and the image-level. Firstly, the class-level coupled dictionary is trained to establish a basic connection between visual space and semantic space. Then, the image attributes are generated based on the basic connection. Finally, the fine-grained information can be embedded by training the image-level coupled dictionary. Zero-shot recognition is performed in multiple spaces by searching the nearest neighbor class of the unseen image. Experiments on two widely used benchmark datasets show the effectiveness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Scale Graph Convolutional Network and Dynamic Iterative Class Loss for Ship Segmentation in Remote Sensing Images Structural Knowledge Organization and Transfer for Class-Incremental Learning Hard-Boundary Attention Network for Nuclei Instance Segmentation Score Transformer: Generating Musical Score from Note-level Representation CMRD-Net: An Improved Method for Underwater Image Enhancement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1