基于深度学习的硬件木马检测方法

S. Sankaran, Vamshi Sunku Mohan, A. Purushothaman
{"title":"基于深度学习的硬件木马检测方法","authors":"S. Sankaran, Vamshi Sunku Mohan, A. Purushothaman","doi":"10.1109/iSES52644.2021.00050","DOIUrl":null,"url":null,"abstract":"Hardware Trojans are modifications made by malicious insiders or third party providers during the design or fabrication phase of the IC (Integrated Circuits) design cycle in a covert manner. These cause catastrophic consequences ranging from manipulating the functionality of individual blocks to disabling the entire chip. Thus, a need for detecting trojans becomes necessary. In this work, we propose a deep learning based approach for detecting trojans in IC chips. In particular, we insert trojans at the circuit-level and generate data by measuring power during normal operation and under attack. Further, we develop deep learning models using Neural networks and Auto-encoders to analyze datasets for outlier detection by profiling the normal behavior and leveraging them to detect anomalies in power consumption. Our approach is generic and non-invasive in that it can be applied to any block without any modifications to the design. Evaluation of the proposed approach shows an accuracy ranging from 92.23% to 99.33% in detecting trojans.","PeriodicalId":293167,"journal":{"name":"2021 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Deep Learning Based Approach for Hardware Trojan Detection\",\"authors\":\"S. Sankaran, Vamshi Sunku Mohan, A. Purushothaman\",\"doi\":\"10.1109/iSES52644.2021.00050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hardware Trojans are modifications made by malicious insiders or third party providers during the design or fabrication phase of the IC (Integrated Circuits) design cycle in a covert manner. These cause catastrophic consequences ranging from manipulating the functionality of individual blocks to disabling the entire chip. Thus, a need for detecting trojans becomes necessary. In this work, we propose a deep learning based approach for detecting trojans in IC chips. In particular, we insert trojans at the circuit-level and generate data by measuring power during normal operation and under attack. Further, we develop deep learning models using Neural networks and Auto-encoders to analyze datasets for outlier detection by profiling the normal behavior and leveraging them to detect anomalies in power consumption. Our approach is generic and non-invasive in that it can be applied to any block without any modifications to the design. Evaluation of the proposed approach shows an accuracy ranging from 92.23% to 99.33% in detecting trojans.\",\"PeriodicalId\":293167,\"journal\":{\"name\":\"2021 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iSES52644.2021.00050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSES52644.2021.00050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

硬件木马是由恶意内部人员或第三方提供商在IC(集成电路)设计周期的设计或制造阶段以隐蔽的方式进行的修改。这些会导致灾难性的后果,从操纵单个块的功能到使整个芯片失效。因此,有必要检测木马程序。在这项工作中,我们提出了一种基于深度学习的方法来检测IC芯片中的木马。特别是,我们在电路级插入木马程序,并在正常运行和受到攻击时通过测量功率来生成数据。此外,我们开发了使用神经网络和自动编码器的深度学习模型,通过分析正常行为来分析数据集,并利用它们来检测功耗异常。我们的方法是通用和非侵入性的,因为它可以应用于任何块,而不需要对设计进行任何修改。结果表明,该方法检测木马的准确率在92.23% ~ 99.33%之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Learning Based Approach for Hardware Trojan Detection
Hardware Trojans are modifications made by malicious insiders or third party providers during the design or fabrication phase of the IC (Integrated Circuits) design cycle in a covert manner. These cause catastrophic consequences ranging from manipulating the functionality of individual blocks to disabling the entire chip. Thus, a need for detecting trojans becomes necessary. In this work, we propose a deep learning based approach for detecting trojans in IC chips. In particular, we insert trojans at the circuit-level and generate data by measuring power during normal operation and under attack. Further, we develop deep learning models using Neural networks and Auto-encoders to analyze datasets for outlier detection by profiling the normal behavior and leveraging them to detect anomalies in power consumption. Our approach is generic and non-invasive in that it can be applied to any block without any modifications to the design. Evaluation of the proposed approach shows an accuracy ranging from 92.23% to 99.33% in detecting trojans.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementation of Self-Controlled Wheelchairs based on Joystick, Gesture Motion and Voice Recognition Dynamic Two Hand Gesture Recognition using CNN-LSTM based networks Performance Assessment of Dual Metal Graded Channel Negative Capacitance Junctionless FET for Digital/Analog field VLSI Architecture of Sigmoid Activation Function for Rapid Prototyping of Machine Learning Applications. Influence of Nanosilica in PVDF Thin Films for Sensing Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1