基于变形的非平稳和非对称多元空间协方差建模

Quan Vu, A. Zammit‐Mangion, N. Cressie
{"title":"基于变形的非平稳和非对称多元空间协方差建模","authors":"Quan Vu, A. Zammit‐Mangion, N. Cressie","doi":"10.5705/ss.202020.0156","DOIUrl":null,"url":null,"abstract":"Multivariate spatial-statistical models are useful for modeling environmental and socio-demographic processes. The most commonly used models for multivariate spatial covariances assume both stationarity and symmetry for the cross-covariances, but these assumptions are rarely tenable in practice. In this article we introduce a new and highly flexible class of nonstationary and asymmetric multivariate spatial covariance models that are constructed by modeling the simpler and more familiar stationary and symmetric multivariate covariances on a warped domain. Inspired by recent developments in the univariate case, we propose modeling the warping function as a composition of a number of simple injective warping functions in a deep-learning framework. Importantly, covariance-model validity is guaranteed by construction. We establish the types of warpings that allow for symmetry and asymmetry, and we use likelihood-based methods for inference that are computationally efficient. The utility of this new class of models is shown through various data illustrations, including a simulation study on nonstationary data and an application on ocean temperatures at two different depths.","PeriodicalId":186390,"journal":{"name":"arXiv: Methodology","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Modeling Nonstationary and Asymmetric Multivariate Spatial Covariances via Deformations\",\"authors\":\"Quan Vu, A. Zammit‐Mangion, N. Cressie\",\"doi\":\"10.5705/ss.202020.0156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multivariate spatial-statistical models are useful for modeling environmental and socio-demographic processes. The most commonly used models for multivariate spatial covariances assume both stationarity and symmetry for the cross-covariances, but these assumptions are rarely tenable in practice. In this article we introduce a new and highly flexible class of nonstationary and asymmetric multivariate spatial covariance models that are constructed by modeling the simpler and more familiar stationary and symmetric multivariate covariances on a warped domain. Inspired by recent developments in the univariate case, we propose modeling the warping function as a composition of a number of simple injective warping functions in a deep-learning framework. Importantly, covariance-model validity is guaranteed by construction. We establish the types of warpings that allow for symmetry and asymmetry, and we use likelihood-based methods for inference that are computationally efficient. The utility of this new class of models is shown through various data illustrations, including a simulation study on nonstationary data and an application on ocean temperatures at two different depths.\",\"PeriodicalId\":186390,\"journal\":{\"name\":\"arXiv: Methodology\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5705/ss.202020.0156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5705/ss.202020.0156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

多元空间统计模型对环境和社会人口过程建模很有用。最常用的多元空间协方差模型假设交叉协方差的平稳性和对称性,但这些假设在实践中很少成立。在本文中,我们介绍了一类新的高度灵活的非平稳和非对称多元空间协方差模型,这些模型是通过在一个扭曲域上对更简单和更熟悉的平稳和对称多元协方差进行建模而构建的。受单变量情况的最新发展的启发,我们提出在深度学习框架中将扭曲函数建模为许多简单的注入扭曲函数的组合。重要的是,协方差模型的有效性通过构造得到保证。我们建立了允许对称和不对称的扭曲类型,并且我们使用基于可能性的方法进行计算效率高的推理。这类新模型的效用通过各种数据插图来展示,包括对非平稳数据的模拟研究和对两个不同深度的海洋温度的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling Nonstationary and Asymmetric Multivariate Spatial Covariances via Deformations
Multivariate spatial-statistical models are useful for modeling environmental and socio-demographic processes. The most commonly used models for multivariate spatial covariances assume both stationarity and symmetry for the cross-covariances, but these assumptions are rarely tenable in practice. In this article we introduce a new and highly flexible class of nonstationary and asymmetric multivariate spatial covariance models that are constructed by modeling the simpler and more familiar stationary and symmetric multivariate covariances on a warped domain. Inspired by recent developments in the univariate case, we propose modeling the warping function as a composition of a number of simple injective warping functions in a deep-learning framework. Importantly, covariance-model validity is guaranteed by construction. We establish the types of warpings that allow for symmetry and asymmetry, and we use likelihood-based methods for inference that are computationally efficient. The utility of this new class of models is shown through various data illustrations, including a simulation study on nonstationary data and an application on ocean temperatures at two different depths.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Revisiting Empirical Bayes Methods and Applications to Special Types of Data Flexible Bayesian modelling of concomitant covariate effects in mixture models A Critique of Differential Abundance Analysis, and Advocacy for an Alternative Post-Processing of MCMC Conditional variance estimator for sufficient dimension reduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1