{"title":"改进介电常数混合规则","authors":"K. Wakino","doi":"10.1109/ISAF.2002.1195876","DOIUrl":null,"url":null,"abstract":"Several equations of mixing rule on permittivity have been proposed, but none of these equations is not perfect, because of too many different configurations exist in actual cases. Serial model and parallel model are two extremes of mixing manner. For the random mixture of fine particles, which does not have a remarkable aspect ratio, customarily the logarithmic mixing rule has been applied. But, the logarithmic mixing rule does not estimate the correct apparent permittivity in low or high mixing rate. The author proposed new equation for the mixing rule that gives better agreement with measured value for whole range of mixing rate compared to the logarithmic rule. In this paper, a desirable refinement on the equation in previous paper is made to adapt to the structural image of actual compound and then the equation has been expanded to the complex permittivity to apply the equation on the dissipative materials cases.","PeriodicalId":415725,"journal":{"name":"Proceedings of the 13th IEEE International Symposium on Applications of Ferroelectrics, 2002. ISAF 2002.","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Improved mixing rule on permittivity\",\"authors\":\"K. Wakino\",\"doi\":\"10.1109/ISAF.2002.1195876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several equations of mixing rule on permittivity have been proposed, but none of these equations is not perfect, because of too many different configurations exist in actual cases. Serial model and parallel model are two extremes of mixing manner. For the random mixture of fine particles, which does not have a remarkable aspect ratio, customarily the logarithmic mixing rule has been applied. But, the logarithmic mixing rule does not estimate the correct apparent permittivity in low or high mixing rate. The author proposed new equation for the mixing rule that gives better agreement with measured value for whole range of mixing rate compared to the logarithmic rule. In this paper, a desirable refinement on the equation in previous paper is made to adapt to the structural image of actual compound and then the equation has been expanded to the complex permittivity to apply the equation on the dissipative materials cases.\",\"PeriodicalId\":415725,\"journal\":{\"name\":\"Proceedings of the 13th IEEE International Symposium on Applications of Ferroelectrics, 2002. ISAF 2002.\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th IEEE International Symposium on Applications of Ferroelectrics, 2002. ISAF 2002.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAF.2002.1195876\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th IEEE International Symposium on Applications of Ferroelectrics, 2002. ISAF 2002.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAF.2002.1195876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Several equations of mixing rule on permittivity have been proposed, but none of these equations is not perfect, because of too many different configurations exist in actual cases. Serial model and parallel model are two extremes of mixing manner. For the random mixture of fine particles, which does not have a remarkable aspect ratio, customarily the logarithmic mixing rule has been applied. But, the logarithmic mixing rule does not estimate the correct apparent permittivity in low or high mixing rate. The author proposed new equation for the mixing rule that gives better agreement with measured value for whole range of mixing rate compared to the logarithmic rule. In this paper, a desirable refinement on the equation in previous paper is made to adapt to the structural image of actual compound and then the equation has been expanded to the complex permittivity to apply the equation on the dissipative materials cases.