前端和后端兼容硅光子片上互连的比较分析

Ishan G. Thakkar, S. V. R. Chittamuru, S. Pasricha
{"title":"前端和后端兼容硅光子片上互连的比较分析","authors":"Ishan G. Thakkar, S. V. R. Chittamuru, S. Pasricha","doi":"10.1145/2947357.2947362","DOIUrl":null,"url":null,"abstract":"Photonic devices fabricated with back-end compatible silicon pho-tonic (BCSP) materials can provide independence from the complex CMOS front-end compatible silicon photonic (FCSP) process, to sig-nificantly enhance photonic network-on-chip (PNoC) architecture performance. In this paper, we present a detailed comparative analy-sis of a number of design tradeoffs for CMOS front-end and back-end compatible devices for silicon photonic interconnects. A cross-layer optimization of multiple device-level and link-level design pa-rameters is performed to enable the design of energy-efficient on-chip photonic interconnects using BCSP devices. The optimized design of BCSP on-chip links renders more energy-efficiency and aggregate bandwidth than FCSP on-chip links, in spite of the inferior opto-elec-tronic properties of BCSP devices. Our experimental analysis com-pares the use of BCSP and FCSP links at the architecture level, and shows that the optimized design of the BCSP-based Firefly PNoC achieves 1.15x greater throughput and 12.4% less energy-per-bit on average than the optimized design of FCSP-based Firefly PNoC. Similarly, the optimized design of the BCSP-based Corona PNoC achieves 3.5x greater throughput and 39.5% less energy-per-bit on average than the optimized design of FCSP-based Corona PNoC.","PeriodicalId":331624,"journal":{"name":"2016 ACM/IEEE International Workshop on System Level Interconnect Prediction (SLIP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A comparative analysis of front-end and back-end compatible silicon photonic on-chip interconnects\",\"authors\":\"Ishan G. Thakkar, S. V. R. Chittamuru, S. Pasricha\",\"doi\":\"10.1145/2947357.2947362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photonic devices fabricated with back-end compatible silicon pho-tonic (BCSP) materials can provide independence from the complex CMOS front-end compatible silicon photonic (FCSP) process, to sig-nificantly enhance photonic network-on-chip (PNoC) architecture performance. In this paper, we present a detailed comparative analy-sis of a number of design tradeoffs for CMOS front-end and back-end compatible devices for silicon photonic interconnects. A cross-layer optimization of multiple device-level and link-level design pa-rameters is performed to enable the design of energy-efficient on-chip photonic interconnects using BCSP devices. The optimized design of BCSP on-chip links renders more energy-efficiency and aggregate bandwidth than FCSP on-chip links, in spite of the inferior opto-elec-tronic properties of BCSP devices. Our experimental analysis com-pares the use of BCSP and FCSP links at the architecture level, and shows that the optimized design of the BCSP-based Firefly PNoC achieves 1.15x greater throughput and 12.4% less energy-per-bit on average than the optimized design of FCSP-based Firefly PNoC. Similarly, the optimized design of the BCSP-based Corona PNoC achieves 3.5x greater throughput and 39.5% less energy-per-bit on average than the optimized design of FCSP-based Corona PNoC.\",\"PeriodicalId\":331624,\"journal\":{\"name\":\"2016 ACM/IEEE International Workshop on System Level Interconnect Prediction (SLIP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 ACM/IEEE International Workshop on System Level Interconnect Prediction (SLIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2947357.2947362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 ACM/IEEE International Workshop on System Level Interconnect Prediction (SLIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2947357.2947362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

后端兼容硅光子(BCSP)材料制备的光子器件可以独立于复杂的CMOS前端兼容硅光子(FCSP)工艺,显著提高光子片上网络(PNoC)架构性能。在本文中,我们对硅光子互连的CMOS前端和后端兼容器件的一些设计权衡进行了详细的比较分析。对多个器件级和链路级设计参数进行了跨层优化,以便使用BCSP器件设计节能的片上光子互连。尽管BCSP器件的光电性能较差,但优化设计的BCSP片上链路比FCSP片上链路具有更高的能效和聚合带宽。我们的实验分析比较了BCSP和FCSP链路在架构层面的使用,结果表明,优化设计的基于BCSP的Firefly PNoC的吞吐量比基于FCSP的优化设计的Firefly PNoC提高了1.15倍,平均每比特能耗减少了12.4%。同样,与基于fcsp的Corona PNoC优化设计相比,基于bcsp的Corona PNoC优化设计的吞吐量提高了3.5倍,平均每比特能耗降低了39.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A comparative analysis of front-end and back-end compatible silicon photonic on-chip interconnects
Photonic devices fabricated with back-end compatible silicon pho-tonic (BCSP) materials can provide independence from the complex CMOS front-end compatible silicon photonic (FCSP) process, to sig-nificantly enhance photonic network-on-chip (PNoC) architecture performance. In this paper, we present a detailed comparative analy-sis of a number of design tradeoffs for CMOS front-end and back-end compatible devices for silicon photonic interconnects. A cross-layer optimization of multiple device-level and link-level design pa-rameters is performed to enable the design of energy-efficient on-chip photonic interconnects using BCSP devices. The optimized design of BCSP on-chip links renders more energy-efficiency and aggregate bandwidth than FCSP on-chip links, in spite of the inferior opto-elec-tronic properties of BCSP devices. Our experimental analysis com-pares the use of BCSP and FCSP links at the architecture level, and shows that the optimized design of the BCSP-based Firefly PNoC achieves 1.15x greater throughput and 12.4% less energy-per-bit on average than the optimized design of FCSP-based Firefly PNoC. Similarly, the optimized design of the BCSP-based Corona PNoC achieves 3.5x greater throughput and 39.5% less energy-per-bit on average than the optimized design of FCSP-based Corona PNoC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Revisiting 3DIC Benefit with Multiple Tiers Topologically-geometric routing A demand-aware predictive dynamic bandwidth allocation mechanism for wireless network-on-chip Buffered interconnects in 3D IC layout design Connectivity effects on energy and area for neuromorphic system with high speed asynchronous pulse mode links
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1