基于支持向量机的股票交易信号预测

X. Chen, Zhi-Jie He
{"title":"基于支持向量机的股票交易信号预测","authors":"X. Chen, Zhi-Jie He","doi":"10.1109/ICICTA.2015.165","DOIUrl":null,"url":null,"abstract":"The prediction of stock trading signal is studied in this paper. Considering the excellent performance of Support Vector Machine (SVM) in pattern recognition, we apply SVM to construct a prediction model to find the stock trading signal. In addition, Piecewise linear representation (PLR) is good at extracting valuable information from a time sequence. PLR is used for checking of turning points in this study. The experiments on some real stocks show that SVM obtains a better result in prediction accuracy and profitability than traditional Back Propagation neural network does.","PeriodicalId":231694,"journal":{"name":"2015 8th International Conference on Intelligent Computation Technology and Automation (ICICTA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Prediction of Stock Trading Signal Based on Support Vector Machine\",\"authors\":\"X. Chen, Zhi-Jie He\",\"doi\":\"10.1109/ICICTA.2015.165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The prediction of stock trading signal is studied in this paper. Considering the excellent performance of Support Vector Machine (SVM) in pattern recognition, we apply SVM to construct a prediction model to find the stock trading signal. In addition, Piecewise linear representation (PLR) is good at extracting valuable information from a time sequence. PLR is used for checking of turning points in this study. The experiments on some real stocks show that SVM obtains a better result in prediction accuracy and profitability than traditional Back Propagation neural network does.\",\"PeriodicalId\":231694,\"journal\":{\"name\":\"2015 8th International Conference on Intelligent Computation Technology and Automation (ICICTA)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 8th International Conference on Intelligent Computation Technology and Automation (ICICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICTA.2015.165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 8th International Conference on Intelligent Computation Technology and Automation (ICICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICTA.2015.165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文研究了股票交易信号的预测问题。考虑到支持向量机在模式识别方面的优异性能,我们利用支持向量机构建预测模型来寻找股票交易信号。此外,分段线性表示(PLR)擅长从时间序列中提取有价值的信息。本研究采用PLR对拐点进行校核。在一些实际股票上的实验表明,支持向量机在预测精度和盈利能力上都优于传统的反向传播神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of Stock Trading Signal Based on Support Vector Machine
The prediction of stock trading signal is studied in this paper. Considering the excellent performance of Support Vector Machine (SVM) in pattern recognition, we apply SVM to construct a prediction model to find the stock trading signal. In addition, Piecewise linear representation (PLR) is good at extracting valuable information from a time sequence. PLR is used for checking of turning points in this study. The experiments on some real stocks show that SVM obtains a better result in prediction accuracy and profitability than traditional Back Propagation neural network does.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Cloud-Based Integrated Management System for Rural Information Service Station: Architecture and Implementation A New Dynamic Authentication Captcha Based on Negotiation Between Host and Mobile Terminal for Electronic Commerce Automatical Optimal Threshold Searching Algorithm Based on Bhattacharyya Distance and Support Vector Machine Hardware Design of Fall Detection System Based on ADXL345 Sensor Non-circular Gear Modal Analysis Based on ABAQUS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1