增强基于lda的左手和右手运动图像识别:优于BCI比赛第二名

Raoof Masoomi, Ali Khadem
{"title":"增强基于lda的左手和右手运动图像识别:优于BCI比赛第二名","authors":"Raoof Masoomi, Ali Khadem","doi":"10.1109/KBEI.2015.7436077","DOIUrl":null,"url":null,"abstract":"Due to the potential applications of Brain-Computer Interfaces (BCI), like producing rehabilitation systems for disabled people, many researches have been aimed at minimizing the error of BCI systems. In this paper, we used left and right hand motor imagery EEG data provided by Graz University of Technology for the BCI Competition II. We attempted to achieve a better misclassification rate while selecting less features compared with various former reported researches on this dataset. We used linear discriminant analysis (LDA) as the classifier due to its low computational cost and previously reported promising results. Furthermore, we investigated what features have major impacts on local or global minimization of the misclassification rate. Also, we briefly assessed the effect of changing window length on the misclassification rate. In this paper first, a set of various statistical, spectral, wavelet-based, connectivity, and chaotic features was extracted from EEG data. Subsequently, an LDA-based wrapper Sequential Forward Selection (SFS) scheme was used for selecting optimum subset of features for each data window. Finally, data windows were classified by LDA. We achieved less misclassification rate using less features compared with previous LDA-based researches and the winner of BCI competition II on the same dataset. Also, the absolute mean of the third-level wavelet detail coefficients (related to μ-band) and the skewness were the two features that together yielded the best local discrimination results.","PeriodicalId":168295,"journal":{"name":"2015 2nd International Conference on Knowledge-Based Engineering and Innovation (KBEI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Enhancing LDA-based discrimination of left and right hand motor imagery: Outperforming the winner of BCI Competition II\",\"authors\":\"Raoof Masoomi, Ali Khadem\",\"doi\":\"10.1109/KBEI.2015.7436077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the potential applications of Brain-Computer Interfaces (BCI), like producing rehabilitation systems for disabled people, many researches have been aimed at minimizing the error of BCI systems. In this paper, we used left and right hand motor imagery EEG data provided by Graz University of Technology for the BCI Competition II. We attempted to achieve a better misclassification rate while selecting less features compared with various former reported researches on this dataset. We used linear discriminant analysis (LDA) as the classifier due to its low computational cost and previously reported promising results. Furthermore, we investigated what features have major impacts on local or global minimization of the misclassification rate. Also, we briefly assessed the effect of changing window length on the misclassification rate. In this paper first, a set of various statistical, spectral, wavelet-based, connectivity, and chaotic features was extracted from EEG data. Subsequently, an LDA-based wrapper Sequential Forward Selection (SFS) scheme was used for selecting optimum subset of features for each data window. Finally, data windows were classified by LDA. We achieved less misclassification rate using less features compared with previous LDA-based researches and the winner of BCI competition II on the same dataset. Also, the absolute mean of the third-level wavelet detail coefficients (related to μ-band) and the skewness were the two features that together yielded the best local discrimination results.\",\"PeriodicalId\":168295,\"journal\":{\"name\":\"2015 2nd International Conference on Knowledge-Based Engineering and Innovation (KBEI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 2nd International Conference on Knowledge-Based Engineering and Innovation (KBEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KBEI.2015.7436077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 2nd International Conference on Knowledge-Based Engineering and Innovation (KBEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KBEI.2015.7436077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

由于脑机接口(BCI)的潜在应用,如制造残疾人康复系统,许多研究都旨在最小化脑机接口系统的误差。在本文中,我们使用了格拉茨工业大学提供的左、右手运动图像脑电数据,用于BCI比赛II。我们试图在选择更少特征的情况下,与以往报道的各种研究相比,达到更好的误分类率。我们使用线性判别分析(LDA)作为分类器,因为它的计算成本低,并且以前报道过有希望的结果。此外,我们研究了哪些特征对局部或全局误分类率最小化有主要影响。此外,我们还简要评估了窗口长度变化对误分类率的影响。本文首先从脑电数据中提取了一系列统计特征、谱特征、小波特征、连通特征和混沌特征。随后,采用基于lda的包装器顺序前向选择(SFS)方案为每个数据窗口选择最优特征子集。最后,利用LDA对数据窗口进行分类。与以往基于lda的研究和同一数据集的BCI竞赛II获胜者相比,我们使用更少的特征实现了更低的误分类率。三级小波细节系数(μ波段相关)的绝对平均值和偏度是产生最佳局部识别结果的两个特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing LDA-based discrimination of left and right hand motor imagery: Outperforming the winner of BCI Competition II
Due to the potential applications of Brain-Computer Interfaces (BCI), like producing rehabilitation systems for disabled people, many researches have been aimed at minimizing the error of BCI systems. In this paper, we used left and right hand motor imagery EEG data provided by Graz University of Technology for the BCI Competition II. We attempted to achieve a better misclassification rate while selecting less features compared with various former reported researches on this dataset. We used linear discriminant analysis (LDA) as the classifier due to its low computational cost and previously reported promising results. Furthermore, we investigated what features have major impacts on local or global minimization of the misclassification rate. Also, we briefly assessed the effect of changing window length on the misclassification rate. In this paper first, a set of various statistical, spectral, wavelet-based, connectivity, and chaotic features was extracted from EEG data. Subsequently, an LDA-based wrapper Sequential Forward Selection (SFS) scheme was used for selecting optimum subset of features for each data window. Finally, data windows were classified by LDA. We achieved less misclassification rate using less features compared with previous LDA-based researches and the winner of BCI competition II on the same dataset. Also, the absolute mean of the third-level wavelet detail coefficients (related to μ-band) and the skewness were the two features that together yielded the best local discrimination results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Numerical investigation of water drop movement within a microchannel under electrowetting phenomenon An improvement on LEACH protocol (EZ-LEACH) Transient modeling of transmission lines components with respect to corona phenomenon and grounding system to reduce the transient voltages caused by lightning Impulse A modified digital to digital encoding method to improve the Wireless Body Area Network (WBAN) transmission Synchronization of chaotic Gyroscopes via an adaptive robust controller
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1