利用随机神经网络预测知识图中的实例类型断言

T. Weller, Maribel Acosta
{"title":"利用随机神经网络预测知识图中的实例类型断言","authors":"T. Weller, Maribel Acosta","doi":"10.1145/3459637.3482377","DOIUrl":null,"url":null,"abstract":"Instance type information is particularly relevant to perform reasoning and obtain further information about entities in knowledge graphs (KGs). However, during automated or pay-as-you-go KG construction processes, instance types might be incomplete or missing in some entities. Previous work focused mostly on representing entities and relations as embeddings based on the statements in the KG. While the computed embeddings encode semantic descriptions and preserve the relationship between the entities, the focus of these methods is often not on predicting schema knowledge, but on predicting missing statements between instances for completing the KG. To fill this gap, we propose an approach that first learns a KG representation suitable for predicting instance type assertions. Then, our solution implements a neural network architecture to predict instance types based on the learned representation. Results show that our representations of entities are much more separable with respect to their associations with classes in the KG, compared to existing methods. For this reason, the performance of predicting instance types on a large number of KGs, in particular on cross-domain KGs with a high variety of classes, is significantly better in terms of F1-score than previous work.","PeriodicalId":405296,"journal":{"name":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Predicting Instance Type Assertions in Knowledge Graphs Using Stochastic Neural Networks\",\"authors\":\"T. Weller, Maribel Acosta\",\"doi\":\"10.1145/3459637.3482377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Instance type information is particularly relevant to perform reasoning and obtain further information about entities in knowledge graphs (KGs). However, during automated or pay-as-you-go KG construction processes, instance types might be incomplete or missing in some entities. Previous work focused mostly on representing entities and relations as embeddings based on the statements in the KG. While the computed embeddings encode semantic descriptions and preserve the relationship between the entities, the focus of these methods is often not on predicting schema knowledge, but on predicting missing statements between instances for completing the KG. To fill this gap, we propose an approach that first learns a KG representation suitable for predicting instance type assertions. Then, our solution implements a neural network architecture to predict instance types based on the learned representation. Results show that our representations of entities are much more separable with respect to their associations with classes in the KG, compared to existing methods. For this reason, the performance of predicting instance types on a large number of KGs, in particular on cross-domain KGs with a high variety of classes, is significantly better in terms of F1-score than previous work.\",\"PeriodicalId\":405296,\"journal\":{\"name\":\"Proceedings of the 30th ACM International Conference on Information & Knowledge Management\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 30th ACM International Conference on Information & Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3459637.3482377\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3459637.3482377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

实例类型信息与执行推理和获取知识图(KGs)中实体的进一步信息特别相关。然而,在自动化或按需付费的KG构建过程中,实例类型可能在某些实体中不完整或缺失。以前的工作主要集中在基于KG中的语句将实体和关系表示为嵌入。虽然计算的嵌入编码语义描述并保留实体之间的关系,但这些方法的重点通常不是预测模式知识,而是预测完成KG的实例之间缺失的语句。为了填补这一空白,我们提出了一种方法,该方法首先学习适合预测实例类型断言的KG表示。然后,我们的解决方案实现了一个基于学习表征的神经网络架构来预测实例类型。结果表明,与现有方法相比,我们的实体表示在与KG中的类的关联方面更加可分离。因此,在大量KGs上预测实例类型的性能,特别是在具有多种类别的跨域KGs上,在f1得分方面明显优于以前的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting Instance Type Assertions in Knowledge Graphs Using Stochastic Neural Networks
Instance type information is particularly relevant to perform reasoning and obtain further information about entities in knowledge graphs (KGs). However, during automated or pay-as-you-go KG construction processes, instance types might be incomplete or missing in some entities. Previous work focused mostly on representing entities and relations as embeddings based on the statements in the KG. While the computed embeddings encode semantic descriptions and preserve the relationship between the entities, the focus of these methods is often not on predicting schema knowledge, but on predicting missing statements between instances for completing the KG. To fill this gap, we propose an approach that first learns a KG representation suitable for predicting instance type assertions. Then, our solution implements a neural network architecture to predict instance types based on the learned representation. Results show that our representations of entities are much more separable with respect to their associations with classes in the KG, compared to existing methods. For this reason, the performance of predicting instance types on a large number of KGs, in particular on cross-domain KGs with a high variety of classes, is significantly better in terms of F1-score than previous work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
UltraGCN Fine and Coarse Granular Argument Classification before Clustering CHASE Crawler Detection in Location-Based Services Using Attributed Action Net Failure Prediction for Large-scale Water Pipe Networks Using GNN and Temporal Failure Series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1