基于粘弹性材料建模的高温PCB树脂制造过程局部载荷数值估计

M. Schmidt, Y. Maniar, R. Ratchev, A. Kabakchiev, M. Guyenot, H. Walter, M. Schneider-Ramelow
{"title":"基于粘弹性材料建模的高温PCB树脂制造过程局部载荷数值估计","authors":"M. Schmidt, Y. Maniar, R. Ratchev, A. Kabakchiev, M. Guyenot, H. Walter, M. Schneider-Ramelow","doi":"10.1109/EUROSIME.2019.8724534","DOIUrl":null,"url":null,"abstract":"In the field of electric and autonomous driving applications, there is currently an increasing demand for high-performance PCB materials, which can meet the requirements of high durability and long-term stability. For example, high temperature PCB base materials with an increased glass transition temperature offer new possibilities and facilitate new fields of usage. However, to the best of our knowledge, their thermomechanical properties on the local scale of glass fiber and resin matrix regions are not widely reported yet. Important investigations on the deformation behavior and the load limits still have to be performed. The lack of a solid experimental data basis hampers the development of numerical simulation methods as a valuable tool for reliability prognoses. In this work, we employ a novel material characterization procedure focused on the local mechanical properties of the PCB resin matrix to support the material modeling for numerical simulations. The goal of the current work is to assess the capabilities of state of the art FE-assisted methods to describe the local material properties in critical locations of a PCB stack. Numerical modeling is performed on mechanical tensile tests as well as on an idealized PCB module subjected to a standard manufacturing profile. We investigate two strategies for modeling a PCB stack, namely as a homogenized block, and as a discrete layer-by-layer stack of filled resin matrix and glass fiber reinforced resin layers. The local loads in a PCB assembly resulting from the simulation of a manufacturing thermal profile are compared to the loads observed in tensile tests. We discuss the current capabilities and limitations in the applied FE-methodology, and we derive necessary improvements of the material modeling and the geometrical discretization approaches for PCB modules.","PeriodicalId":357224,"journal":{"name":"2019 20th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Numerical estimation of local load during manufacturing process in high temperature PCB resin based on viscoelastic material modeling\",\"authors\":\"M. Schmidt, Y. Maniar, R. Ratchev, A. Kabakchiev, M. Guyenot, H. Walter, M. Schneider-Ramelow\",\"doi\":\"10.1109/EUROSIME.2019.8724534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the field of electric and autonomous driving applications, there is currently an increasing demand for high-performance PCB materials, which can meet the requirements of high durability and long-term stability. For example, high temperature PCB base materials with an increased glass transition temperature offer new possibilities and facilitate new fields of usage. However, to the best of our knowledge, their thermomechanical properties on the local scale of glass fiber and resin matrix regions are not widely reported yet. Important investigations on the deformation behavior and the load limits still have to be performed. The lack of a solid experimental data basis hampers the development of numerical simulation methods as a valuable tool for reliability prognoses. In this work, we employ a novel material characterization procedure focused on the local mechanical properties of the PCB resin matrix to support the material modeling for numerical simulations. The goal of the current work is to assess the capabilities of state of the art FE-assisted methods to describe the local material properties in critical locations of a PCB stack. Numerical modeling is performed on mechanical tensile tests as well as on an idealized PCB module subjected to a standard manufacturing profile. We investigate two strategies for modeling a PCB stack, namely as a homogenized block, and as a discrete layer-by-layer stack of filled resin matrix and glass fiber reinforced resin layers. The local loads in a PCB assembly resulting from the simulation of a manufacturing thermal profile are compared to the loads observed in tensile tests. We discuss the current capabilities and limitations in the applied FE-methodology, and we derive necessary improvements of the material modeling and the geometrical discretization approaches for PCB modules.\",\"PeriodicalId\":357224,\"journal\":{\"name\":\"2019 20th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 20th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROSIME.2019.8724534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2019.8724534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在电动和自动驾驶应用领域,目前对高性能PCB材料的需求越来越大,这种材料可以满足高耐用性和长期稳定性的要求。例如,提高玻璃化转变温度的高温PCB基材提供了新的可能性,并促进了新的使用领域。然而,据我们所知,它们在玻璃纤维和树脂基体区域局部尺度上的热机械性能尚未被广泛报道。对变形行为和荷载极限的重要研究仍有待进行。缺乏坚实的实验数据基础阻碍了数值模拟方法作为可靠性预测的宝贵工具的发展。在这项工作中,我们采用了一种新颖的材料表征方法,专注于PCB树脂基体的局部机械性能,以支持数值模拟的材料建模。当前工作的目标是评估最先进的fe辅助方法的能力,以描述PCB堆叠关键位置的局部材料特性。数值模拟是在机械拉伸测试以及理想的PCB模块上进行的标准制造配置文件。我们研究了两种建模PCB堆栈的策略,即作为均匀块,以及作为填充树脂基体和玻璃纤维增强树脂层的离散逐层堆栈。由制造热剖面模拟产生的PCB组件中的局部负载与拉伸试验中观察到的负载进行了比较。我们讨论了当前应用有限元方法的能力和局限性,并对PCB模块的材料建模和几何离散化方法进行了必要的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical estimation of local load during manufacturing process in high temperature PCB resin based on viscoelastic material modeling
In the field of electric and autonomous driving applications, there is currently an increasing demand for high-performance PCB materials, which can meet the requirements of high durability and long-term stability. For example, high temperature PCB base materials with an increased glass transition temperature offer new possibilities and facilitate new fields of usage. However, to the best of our knowledge, their thermomechanical properties on the local scale of glass fiber and resin matrix regions are not widely reported yet. Important investigations on the deformation behavior and the load limits still have to be performed. The lack of a solid experimental data basis hampers the development of numerical simulation methods as a valuable tool for reliability prognoses. In this work, we employ a novel material characterization procedure focused on the local mechanical properties of the PCB resin matrix to support the material modeling for numerical simulations. The goal of the current work is to assess the capabilities of state of the art FE-assisted methods to describe the local material properties in critical locations of a PCB stack. Numerical modeling is performed on mechanical tensile tests as well as on an idealized PCB module subjected to a standard manufacturing profile. We investigate two strategies for modeling a PCB stack, namely as a homogenized block, and as a discrete layer-by-layer stack of filled resin matrix and glass fiber reinforced resin layers. The local loads in a PCB assembly resulting from the simulation of a manufacturing thermal profile are compared to the loads observed in tensile tests. We discuss the current capabilities and limitations in the applied FE-methodology, and we derive necessary improvements of the material modeling and the geometrical discretization approaches for PCB modules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A SPICE-based Transient Thermal-Electronic Model for LEDs Electromigration Effects in Corroded BGA Accelerated Pump Out Testing for Thermal Greases Effect of material properties on PCB frequencies in electronic control unit Simulative Comparison of Polymer and Ceramic Encapsulation on SiC-MOSFET Power Modules under Thermomechanical Load
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1