{"title":"标记数据的对角线彩色iVAT图像","authors":"Elizabeth D. Hathaway, R. Hathaway","doi":"10.1109/ICDMW58026.2022.00043","DOIUrl":null,"url":null,"abstract":"The iVAT (improved Visual Assessment of cluster Tendency) image is a useful tool for assessing possible cluster structure in an unlabeled, numerical data set. If labeled data are available then it is sometimes helpful to determine how closely the (unlabeled) data clusters agree with the data partitioning based on the labels. In this note the DCiVAT (Diagonally Colorized iVAT) image is introduced for the case of labeled data. It incorporates all available data and label information into a single colorized iVAT image so that it is possible to visually assess the degree to which data clusters are aligned with label categories. The new approach is illustrated with several examples.","PeriodicalId":146687,"journal":{"name":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diagonally Colorized iVAT Images for Labeled Data\",\"authors\":\"Elizabeth D. Hathaway, R. Hathaway\",\"doi\":\"10.1109/ICDMW58026.2022.00043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The iVAT (improved Visual Assessment of cluster Tendency) image is a useful tool for assessing possible cluster structure in an unlabeled, numerical data set. If labeled data are available then it is sometimes helpful to determine how closely the (unlabeled) data clusters agree with the data partitioning based on the labels. In this note the DCiVAT (Diagonally Colorized iVAT) image is introduced for the case of labeled data. It incorporates all available data and label information into a single colorized iVAT image so that it is possible to visually assess the degree to which data clusters are aligned with label categories. The new approach is illustrated with several examples.\",\"PeriodicalId\":146687,\"journal\":{\"name\":\"2022 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW58026.2022.00043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW58026.2022.00043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The iVAT (improved Visual Assessment of cluster Tendency) image is a useful tool for assessing possible cluster structure in an unlabeled, numerical data set. If labeled data are available then it is sometimes helpful to determine how closely the (unlabeled) data clusters agree with the data partitioning based on the labels. In this note the DCiVAT (Diagonally Colorized iVAT) image is introduced for the case of labeled data. It incorporates all available data and label information into a single colorized iVAT image so that it is possible to visually assess the degree to which data clusters are aligned with label categories. The new approach is illustrated with several examples.