标记数据的对角线彩色iVAT图像

Elizabeth D. Hathaway, R. Hathaway
{"title":"标记数据的对角线彩色iVAT图像","authors":"Elizabeth D. Hathaway, R. Hathaway","doi":"10.1109/ICDMW58026.2022.00043","DOIUrl":null,"url":null,"abstract":"The iVAT (improved Visual Assessment of cluster Tendency) image is a useful tool for assessing possible cluster structure in an unlabeled, numerical data set. If labeled data are available then it is sometimes helpful to determine how closely the (unlabeled) data clusters agree with the data partitioning based on the labels. In this note the DCiVAT (Diagonally Colorized iVAT) image is introduced for the case of labeled data. It incorporates all available data and label information into a single colorized iVAT image so that it is possible to visually assess the degree to which data clusters are aligned with label categories. The new approach is illustrated with several examples.","PeriodicalId":146687,"journal":{"name":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diagonally Colorized iVAT Images for Labeled Data\",\"authors\":\"Elizabeth D. Hathaway, R. Hathaway\",\"doi\":\"10.1109/ICDMW58026.2022.00043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The iVAT (improved Visual Assessment of cluster Tendency) image is a useful tool for assessing possible cluster structure in an unlabeled, numerical data set. If labeled data are available then it is sometimes helpful to determine how closely the (unlabeled) data clusters agree with the data partitioning based on the labels. In this note the DCiVAT (Diagonally Colorized iVAT) image is introduced for the case of labeled data. It incorporates all available data and label information into a single colorized iVAT image so that it is possible to visually assess the degree to which data clusters are aligned with label categories. The new approach is illustrated with several examples.\",\"PeriodicalId\":146687,\"journal\":{\"name\":\"2022 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW58026.2022.00043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW58026.2022.00043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

iVAT(改进的聚类趋势视觉评估)图像是在未标记的数值数据集中评估可能的聚类结构的有用工具。如果有标记的数据可用,那么确定(未标记的)数据集群与基于标签的数据分区的一致程度有时是有帮助的。在本文中,针对标记数据的情况,介绍了DCiVAT(对角线彩色iVAT)图像。它将所有可用的数据和标签信息合并到单个彩色iVAT图像中,以便可以直观地评估数据簇与标签类别对齐的程度。用几个例子说明了这种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Diagonally Colorized iVAT Images for Labeled Data
The iVAT (improved Visual Assessment of cluster Tendency) image is a useful tool for assessing possible cluster structure in an unlabeled, numerical data set. If labeled data are available then it is sometimes helpful to determine how closely the (unlabeled) data clusters agree with the data partitioning based on the labels. In this note the DCiVAT (Diagonally Colorized iVAT) image is introduced for the case of labeled data. It incorporates all available data and label information into a single colorized iVAT image so that it is possible to visually assess the degree to which data clusters are aligned with label categories. The new approach is illustrated with several examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Above Ground Biomass Estimation of a Cocoa Plantation using Machine Learning Backdoor Poisoning of Encrypted Traffic Classifiers Identifying Patterns of Vulnerability Incidence in Foundational Machine Learning Repositories on GitHub: An Unsupervised Graph Embedding Approach Data-driven Kernel Subspace Clustering with Local Manifold Preservation Persona-Based Conversational AI: State of the Art and Challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1