垂直COM运动生成以减少行走时的滑动和机械功

Sumin Park, Jaeheung Park
{"title":"垂直COM运动生成以减少行走时的滑动和机械功","authors":"Sumin Park, Jaeheung Park","doi":"10.1109/Humanoids43949.2019.9034997","DOIUrl":null,"url":null,"abstract":"A robot foot can slip when the horizontal shear force acting on the foot exceeds the frictional force between the foot and the ground. In the linear inverted-pendulum (LIP) model, the vertical height of the center of mass (COM) is kept constant, and the vertical force is always equal to the gravitational force at any walking speed. However, the horizontal force increases upon increasing the walking speed. This restriction on the vertical force in the LIP model can cause the robot foot to slip at fast walking speeds, as the horizontal force can exceed the frictional force, which is proportional to the vertical force. In this study, we present an optimization method to generate vertical COM motion to maintain the utilized coefficient of friction (uCOF) less than the available coefficient of friction between the foot and the ground, and to minimize the mechanical work of the COM. Vertical motions at various speeds are generated using the proposed optimization method. Subsequently, the generated COM motion patterns are used as reference trajectories of the COM in robot simulation. Optimization and simulation results demonstrate that the mechanical work and uCOF decrease because of the vertical motion. This study suggests a way to generate slip-safe and energy-efficient COM patterns, which, in turn, overcome the limitations of the LIP model by adding vertical COM motion.","PeriodicalId":404758,"journal":{"name":"2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vertical COM Motion Generation to Reduce Slipping and Mechanical Work during Walking\",\"authors\":\"Sumin Park, Jaeheung Park\",\"doi\":\"10.1109/Humanoids43949.2019.9034997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A robot foot can slip when the horizontal shear force acting on the foot exceeds the frictional force between the foot and the ground. In the linear inverted-pendulum (LIP) model, the vertical height of the center of mass (COM) is kept constant, and the vertical force is always equal to the gravitational force at any walking speed. However, the horizontal force increases upon increasing the walking speed. This restriction on the vertical force in the LIP model can cause the robot foot to slip at fast walking speeds, as the horizontal force can exceed the frictional force, which is proportional to the vertical force. In this study, we present an optimization method to generate vertical COM motion to maintain the utilized coefficient of friction (uCOF) less than the available coefficient of friction between the foot and the ground, and to minimize the mechanical work of the COM. Vertical motions at various speeds are generated using the proposed optimization method. Subsequently, the generated COM motion patterns are used as reference trajectories of the COM in robot simulation. Optimization and simulation results demonstrate that the mechanical work and uCOF decrease because of the vertical motion. This study suggests a way to generate slip-safe and energy-efficient COM patterns, which, in turn, overcome the limitations of the LIP model by adding vertical COM motion.\",\"PeriodicalId\":404758,\"journal\":{\"name\":\"2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Humanoids43949.2019.9034997\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Humanoids43949.2019.9034997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当作用在机器人脚上的水平剪切力超过脚与地面之间的摩擦力时,机器人脚就会打滑。在线性倒立摆(LIP)模型中,质心(COM)的垂直高度保持恒定,且在任意行走速度下,垂直力始终等于重力。然而,水平力随着行走速度的增加而增加。LIP模型中对垂直力的限制会导致机器人脚在快速行走时打滑,因为水平力会超过摩擦力,而摩擦力与垂直力成正比。在这项研究中,我们提出了一种优化方法来产生垂直的COM运动,以保持利用的摩擦系数(uCOF)小于脚与地面之间的有效摩擦系数,并使COM的机械功最小化。利用所提出的优化方法生成了不同速度下的垂直运动。然后,将生成的COM运动模式作为COM在机器人仿真中的参考轨迹。优化和仿真结果表明,垂直运动降低了机械功和uCOF。本研究提出了一种生成滑移安全且节能的COM模式的方法,该模式通过增加垂直COM运动来克服LIP模型的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vertical COM Motion Generation to Reduce Slipping and Mechanical Work during Walking
A robot foot can slip when the horizontal shear force acting on the foot exceeds the frictional force between the foot and the ground. In the linear inverted-pendulum (LIP) model, the vertical height of the center of mass (COM) is kept constant, and the vertical force is always equal to the gravitational force at any walking speed. However, the horizontal force increases upon increasing the walking speed. This restriction on the vertical force in the LIP model can cause the robot foot to slip at fast walking speeds, as the horizontal force can exceed the frictional force, which is proportional to the vertical force. In this study, we present an optimization method to generate vertical COM motion to maintain the utilized coefficient of friction (uCOF) less than the available coefficient of friction between the foot and the ground, and to minimize the mechanical work of the COM. Vertical motions at various speeds are generated using the proposed optimization method. Subsequently, the generated COM motion patterns are used as reference trajectories of the COM in robot simulation. Optimization and simulation results demonstrate that the mechanical work and uCOF decrease because of the vertical motion. This study suggests a way to generate slip-safe and energy-efficient COM patterns, which, in turn, overcome the limitations of the LIP model by adding vertical COM motion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Position-Based Lateral Balance Control for Knee-Stretched Biped Robot Mechanistic Properties of Five-bar Parallel Mechanism for Leg Structure Based on Spring Loaded Inverted Pendulum A deep reinforcement learning based approach towards generating human walking behavior with a neuromuscular model Using Virtual Reality to Examine the Neural and Physiological Anxiety-Related Responses to Balance-Demanding Target-Reaching Leaning Tasks Motion Retargeting and Control for Teleoperated Physical Human-Robot Interaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1