N. Azhar, S. S. Shariffudin, Z. Nurbaya, I. H. Affendi, A. Shafura, M. Rusop
{"title":"不同重量百分比的MEH-PPV/ZnO纳米复合材料在OLED应用中的光学性能","authors":"N. Azhar, S. S. Shariffudin, Z. Nurbaya, I. H. Affendi, A. Shafura, M. Rusop","doi":"10.1109/SMELEC.2014.6920889","DOIUrl":null,"url":null,"abstract":"Nanocomposite based on zinc oxide (ZnO) nanostructures and poly [2-methoxy-5(2'-ethylhexyloxy)-phenylene vinylene) (MEH-PPV) of various weight percent have been obtained using sol-gel method. The substrates were deposit at 0.1 wt% to 0.4 wt% of ZnO with pure MEH-PPV to investigate the concentration effect of MEH-PPV/ZnO nanocomposite. The structural properties were characterized using FESEM and AFM to obtain the morphology of nanocomposite. From the AFM, it was found that the roughness is more uniform. The optical properties were obtained using ultraviolet-visible spectrometer (UV-Vis). It was found that the transmittance band increased with decreased of weight percent of ZnO nanostructures. For photoluminescence (PL) spectra shows that 0.4 wt% of ZnO at visible emission is due to emission characterisitic of PPV backbone which is arise from the relaxtion of excited π-electron to the ground state. This study will provide better performance and suitable for optoelectronic device especially OLEDs application.","PeriodicalId":268203,"journal":{"name":"2014 IEEE International Conference on Semiconductor Electronics (ICSE2014)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optical performance of MEH-PPV/ZnO nanocomposite at different weight percent for OLED applications\",\"authors\":\"N. Azhar, S. S. Shariffudin, Z. Nurbaya, I. H. Affendi, A. Shafura, M. Rusop\",\"doi\":\"10.1109/SMELEC.2014.6920889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanocomposite based on zinc oxide (ZnO) nanostructures and poly [2-methoxy-5(2'-ethylhexyloxy)-phenylene vinylene) (MEH-PPV) of various weight percent have been obtained using sol-gel method. The substrates were deposit at 0.1 wt% to 0.4 wt% of ZnO with pure MEH-PPV to investigate the concentration effect of MEH-PPV/ZnO nanocomposite. The structural properties were characterized using FESEM and AFM to obtain the morphology of nanocomposite. From the AFM, it was found that the roughness is more uniform. The optical properties were obtained using ultraviolet-visible spectrometer (UV-Vis). It was found that the transmittance band increased with decreased of weight percent of ZnO nanostructures. For photoluminescence (PL) spectra shows that 0.4 wt% of ZnO at visible emission is due to emission characterisitic of PPV backbone which is arise from the relaxtion of excited π-electron to the ground state. This study will provide better performance and suitable for optoelectronic device especially OLEDs application.\",\"PeriodicalId\":268203,\"journal\":{\"name\":\"2014 IEEE International Conference on Semiconductor Electronics (ICSE2014)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Semiconductor Electronics (ICSE2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMELEC.2014.6920889\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Semiconductor Electronics (ICSE2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMELEC.2014.6920889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optical performance of MEH-PPV/ZnO nanocomposite at different weight percent for OLED applications
Nanocomposite based on zinc oxide (ZnO) nanostructures and poly [2-methoxy-5(2'-ethylhexyloxy)-phenylene vinylene) (MEH-PPV) of various weight percent have been obtained using sol-gel method. The substrates were deposit at 0.1 wt% to 0.4 wt% of ZnO with pure MEH-PPV to investigate the concentration effect of MEH-PPV/ZnO nanocomposite. The structural properties were characterized using FESEM and AFM to obtain the morphology of nanocomposite. From the AFM, it was found that the roughness is more uniform. The optical properties were obtained using ultraviolet-visible spectrometer (UV-Vis). It was found that the transmittance band increased with decreased of weight percent of ZnO nanostructures. For photoluminescence (PL) spectra shows that 0.4 wt% of ZnO at visible emission is due to emission characterisitic of PPV backbone which is arise from the relaxtion of excited π-electron to the ground state. This study will provide better performance and suitable for optoelectronic device especially OLEDs application.