具有里程不确定性的多智能体移动机器人在线地图构建进化算法

Yong-Jae Kim, Jong-Hwan Kim
{"title":"具有里程不确定性的多智能体移动机器人在线地图构建进化算法","authors":"Yong-Jae Kim, Jong-Hwan Kim","doi":"10.1109/CEC.2000.870286","DOIUrl":null,"url":null,"abstract":"An online map building evolutionary algorithm is proposed using multi-agent mobile robots with odometric uncertainty. The control algorithm for map building in each robot is identical and trained by an online evolutionary algorithm (EA). Each robot has configuration uncertainty which increases as it moves, and it perceives the surrounding environment information by the limited range sensors. It communicates with other robots and shares the information. The elementary behaviors are defined and they are used to build a map. EA is applied to the defined behavior set for optimizing the robot actions. To demonstrate the effectiveness of the proposed algorithm, computer simulations are conducted for various environments.","PeriodicalId":218136,"journal":{"name":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Online map building evolutionary algorithm for multi-agent mobile robots with odometric uncertainty\",\"authors\":\"Yong-Jae Kim, Jong-Hwan Kim\",\"doi\":\"10.1109/CEC.2000.870286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An online map building evolutionary algorithm is proposed using multi-agent mobile robots with odometric uncertainty. The control algorithm for map building in each robot is identical and trained by an online evolutionary algorithm (EA). Each robot has configuration uncertainty which increases as it moves, and it perceives the surrounding environment information by the limited range sensors. It communicates with other robots and shares the information. The elementary behaviors are defined and they are used to build a map. EA is applied to the defined behavior set for optimizing the robot actions. To demonstrate the effectiveness of the proposed algorithm, computer simulations are conducted for various environments.\",\"PeriodicalId\":218136,\"journal\":{\"name\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2000.870286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2000.870286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种基于里程不确定性的多智能体移动机器人在线地图构建进化算法。每个机器人绘制地图的控制算法是相同的,并采用在线进化算法(EA)进行训练。每个机器人都有构型的不确定性,这种不确定性随着机器人的移动而增加,并且机器人通过有限范围的传感器来感知周围环境信息。它与其他机器人交流并共享信息。定义了基本行为,并使用它们来构建映射。将EA应用于已定义的行为集,以优化机器人的动作。为了证明该算法的有效性,在不同的环境下进行了计算机模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Online map building evolutionary algorithm for multi-agent mobile robots with odometric uncertainty
An online map building evolutionary algorithm is proposed using multi-agent mobile robots with odometric uncertainty. The control algorithm for map building in each robot is identical and trained by an online evolutionary algorithm (EA). Each robot has configuration uncertainty which increases as it moves, and it perceives the surrounding environment information by the limited range sensors. It communicates with other robots and shares the information. The elementary behaviors are defined and they are used to build a map. EA is applied to the defined behavior set for optimizing the robot actions. To demonstrate the effectiveness of the proposed algorithm, computer simulations are conducted for various environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Test-case generator TCG-2 for nonlinear parameter optimisation Accelerating multi-objective control system design using a neuro-genetic approach On the use of stochastic estimator learning automata for dynamic channel allocation in broadcast networks A hierarchical distributed genetic algorithm for image segmentation Genetic learning of multi-attribute interactions in speaker verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1