T. Udayanga, W. Jayathilaka, Y. Amarasinghe, D. Dao
{"title":"基于MEMS的五自由度触觉力传感器的设计与仿真","authors":"T. Udayanga, W. Jayathilaka, Y. Amarasinghe, D. Dao","doi":"10.1109/MERCON.2016.7480113","DOIUrl":null,"url":null,"abstract":"This paper describes design and simulation of five degrees of freedom (5-DOF) Micro-Electro-Mechanical systems (MEMS) based tactile force sensor. Tactile sensing involves with measuring physical parameters such as force, temperature, etc. with the aid of physical touch. Over the past decades tactile sensors are gaining popularity over non-contact sensors in biomedical and robotic applications. Proposed sensor design with 3mm × 3mm × 300μm dimensions, has the capability to measure not only the magnitude but also the direction of the force applied. A wagon wheel spring structure was proposed, where 8 beams work as springs to relief the force applied. Behavior of these 8 beams are monitored under each loading conditions using defused piezoresistive sensing elements. A finite element analysis of structure was performed to optimize and validate the structure and Multiphysics analysis was performed to validate the working principal of the proposed sensor.","PeriodicalId":184790,"journal":{"name":"2016 Moratuwa Engineering Research Conference (MERCon)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design and simulation of MEMS based 5-DOF tactile force sensor\",\"authors\":\"T. Udayanga, W. Jayathilaka, Y. Amarasinghe, D. Dao\",\"doi\":\"10.1109/MERCON.2016.7480113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes design and simulation of five degrees of freedom (5-DOF) Micro-Electro-Mechanical systems (MEMS) based tactile force sensor. Tactile sensing involves with measuring physical parameters such as force, temperature, etc. with the aid of physical touch. Over the past decades tactile sensors are gaining popularity over non-contact sensors in biomedical and robotic applications. Proposed sensor design with 3mm × 3mm × 300μm dimensions, has the capability to measure not only the magnitude but also the direction of the force applied. A wagon wheel spring structure was proposed, where 8 beams work as springs to relief the force applied. Behavior of these 8 beams are monitored under each loading conditions using defused piezoresistive sensing elements. A finite element analysis of structure was performed to optimize and validate the structure and Multiphysics analysis was performed to validate the working principal of the proposed sensor.\",\"PeriodicalId\":184790,\"journal\":{\"name\":\"2016 Moratuwa Engineering Research Conference (MERCon)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Moratuwa Engineering Research Conference (MERCon)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MERCON.2016.7480113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Moratuwa Engineering Research Conference (MERCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MERCON.2016.7480113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and simulation of MEMS based 5-DOF tactile force sensor
This paper describes design and simulation of five degrees of freedom (5-DOF) Micro-Electro-Mechanical systems (MEMS) based tactile force sensor. Tactile sensing involves with measuring physical parameters such as force, temperature, etc. with the aid of physical touch. Over the past decades tactile sensors are gaining popularity over non-contact sensors in biomedical and robotic applications. Proposed sensor design with 3mm × 3mm × 300μm dimensions, has the capability to measure not only the magnitude but also the direction of the force applied. A wagon wheel spring structure was proposed, where 8 beams work as springs to relief the force applied. Behavior of these 8 beams are monitored under each loading conditions using defused piezoresistive sensing elements. A finite element analysis of structure was performed to optimize and validate the structure and Multiphysics analysis was performed to validate the working principal of the proposed sensor.