{"title":"天然气脱水装置脱水效率低下及相关设计挑战的研究——以X燃气厂为例","authors":"S. Ibeh, S. Chibueze, B. Obah","doi":"10.3968/9672","DOIUrl":null,"url":null,"abstract":"The value and contribution of natural gas in both domestic and economic terrains are extensive. However, its contaminant limits direct application and hence must be treated. Water vapour existing in equilibrium with dry gas is the principal among contaminants. Most corrosion both with acid gases and carbonate salts are traceable to the presence of water. Also the formation of solid icy structures called hydrates constitutes a threat to flow assurance. Removal of water by TEG dehydration trains is not uncommon. Dehydration inefficiencies such as high water content of the outlet gas and glycol losses could impair operations and considerably reduce profit. Inefficiency in GDU was identified to be due to design factors and operational conditions/scenarios. In the case studied, laboratory analysis of TEG was combined with process simulation results to resolve inconsistencies in design and operational phases. Recommendations for further improvements were also presented.","PeriodicalId":313367,"journal":{"name":"Advances in Petroleum Exploration and Development","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Investigation of Dehydration Inefficiencies and Associated Design Challenges in a Gas Dehydration Unit: A Case Study of X Gas Plant\",\"authors\":\"S. Ibeh, S. Chibueze, B. Obah\",\"doi\":\"10.3968/9672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The value and contribution of natural gas in both domestic and economic terrains are extensive. However, its contaminant limits direct application and hence must be treated. Water vapour existing in equilibrium with dry gas is the principal among contaminants. Most corrosion both with acid gases and carbonate salts are traceable to the presence of water. Also the formation of solid icy structures called hydrates constitutes a threat to flow assurance. Removal of water by TEG dehydration trains is not uncommon. Dehydration inefficiencies such as high water content of the outlet gas and glycol losses could impair operations and considerably reduce profit. Inefficiency in GDU was identified to be due to design factors and operational conditions/scenarios. In the case studied, laboratory analysis of TEG was combined with process simulation results to resolve inconsistencies in design and operational phases. Recommendations for further improvements were also presented.\",\"PeriodicalId\":313367,\"journal\":{\"name\":\"Advances in Petroleum Exploration and Development\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Petroleum Exploration and Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3968/9672\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Petroleum Exploration and Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3968/9672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Investigation of Dehydration Inefficiencies and Associated Design Challenges in a Gas Dehydration Unit: A Case Study of X Gas Plant
The value and contribution of natural gas in both domestic and economic terrains are extensive. However, its contaminant limits direct application and hence must be treated. Water vapour existing in equilibrium with dry gas is the principal among contaminants. Most corrosion both with acid gases and carbonate salts are traceable to the presence of water. Also the formation of solid icy structures called hydrates constitutes a threat to flow assurance. Removal of water by TEG dehydration trains is not uncommon. Dehydration inefficiencies such as high water content of the outlet gas and glycol losses could impair operations and considerably reduce profit. Inefficiency in GDU was identified to be due to design factors and operational conditions/scenarios. In the case studied, laboratory analysis of TEG was combined with process simulation results to resolve inconsistencies in design and operational phases. Recommendations for further improvements were also presented.