{"title":"SEED分析的动态行为模型;利用表面响应模型进行提取","authors":"M. Coenen, Ye Ming, Huichun Yu, Li Ension","doi":"10.1109/APEMC.2016.7522821","DOIUrl":null,"url":null,"abstract":"System Efficient ESD Design (SEED) requires dynamic behavior models from the devices and circuitry used along the protection chain, typically from the discharge point of entry at the PCB boundary i.e. connector up to the circuits on-chip to be protected. In-between this path there may be external ESD protection i.e. voltage clamping together with parasitic layout effects, interconnect path delay with specific transmission line properties, package design up to on-chip protection design with parasitic layout effects and ultimately the on-chip circuit(s) to be protected, being unpowered or powered.","PeriodicalId":358257,"journal":{"name":"2016 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Dynamic behavior model for SEED analysis; extraction using surface response modelling\",\"authors\":\"M. Coenen, Ye Ming, Huichun Yu, Li Ension\",\"doi\":\"10.1109/APEMC.2016.7522821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"System Efficient ESD Design (SEED) requires dynamic behavior models from the devices and circuitry used along the protection chain, typically from the discharge point of entry at the PCB boundary i.e. connector up to the circuits on-chip to be protected. In-between this path there may be external ESD protection i.e. voltage clamping together with parasitic layout effects, interconnect path delay with specific transmission line properties, package design up to on-chip protection design with parasitic layout effects and ultimately the on-chip circuit(s) to be protected, being unpowered or powered.\",\"PeriodicalId\":358257,\"journal\":{\"name\":\"2016 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APEMC.2016.7522821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEMC.2016.7522821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic behavior model for SEED analysis; extraction using surface response modelling
System Efficient ESD Design (SEED) requires dynamic behavior models from the devices and circuitry used along the protection chain, typically from the discharge point of entry at the PCB boundary i.e. connector up to the circuits on-chip to be protected. In-between this path there may be external ESD protection i.e. voltage clamping together with parasitic layout effects, interconnect path delay with specific transmission line properties, package design up to on-chip protection design with parasitic layout effects and ultimately the on-chip circuit(s) to be protected, being unpowered or powered.