{"title":"优化视频质量估计跨分辨率","authors":"Abhinau K. Venkataramanan, Chengyang Wu, A. Bovik","doi":"10.1109/MMSP48831.2020.9287116","DOIUrl":null,"url":null,"abstract":"Many algorithms have been developed to evaluate the perceptual quality of images and videos, based on models of picture statistics and visual perception. These algorithms attempt to capture user experience better than simple metrics like the peak signal-to-noise ratio (PSNR) and are widely utilized on streaming service platforms and in social networking applications to improve users’ Quality of Experience. The growing demand for high-resolution streams and rapid increases in user-generated content (UGC) sharpens interest in the computation involved in carrying out perceptual quality measurements. In this direction, we propose a suite of methods to efficiently predict the structural similarity index (SSIM) of high-resolution videos distorted by scaling and compression, from computations performed at lower resolutions. We show the effectiveness of our algorithms by testing on a large corpus of videos and on subjective data.","PeriodicalId":188283,"journal":{"name":"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimizing Video Quality Estimation Across Resolutions\",\"authors\":\"Abhinau K. Venkataramanan, Chengyang Wu, A. Bovik\",\"doi\":\"10.1109/MMSP48831.2020.9287116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many algorithms have been developed to evaluate the perceptual quality of images and videos, based on models of picture statistics and visual perception. These algorithms attempt to capture user experience better than simple metrics like the peak signal-to-noise ratio (PSNR) and are widely utilized on streaming service platforms and in social networking applications to improve users’ Quality of Experience. The growing demand for high-resolution streams and rapid increases in user-generated content (UGC) sharpens interest in the computation involved in carrying out perceptual quality measurements. In this direction, we propose a suite of methods to efficiently predict the structural similarity index (SSIM) of high-resolution videos distorted by scaling and compression, from computations performed at lower resolutions. We show the effectiveness of our algorithms by testing on a large corpus of videos and on subjective data.\",\"PeriodicalId\":188283,\"journal\":{\"name\":\"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP48831.2020.9287116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP48831.2020.9287116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimizing Video Quality Estimation Across Resolutions
Many algorithms have been developed to evaluate the perceptual quality of images and videos, based on models of picture statistics and visual perception. These algorithms attempt to capture user experience better than simple metrics like the peak signal-to-noise ratio (PSNR) and are widely utilized on streaming service platforms and in social networking applications to improve users’ Quality of Experience. The growing demand for high-resolution streams and rapid increases in user-generated content (UGC) sharpens interest in the computation involved in carrying out perceptual quality measurements. In this direction, we propose a suite of methods to efficiently predict the structural similarity index (SSIM) of high-resolution videos distorted by scaling and compression, from computations performed at lower resolutions. We show the effectiveness of our algorithms by testing on a large corpus of videos and on subjective data.