基于pf - madpg的多智能体协同攻击防御目标任务决策

Maomao Zhao, Shaojie Zhang, Bin Jiang
{"title":"基于pf - madpg的多智能体协同攻击防御目标任务决策","authors":"Maomao Zhao, Shaojie Zhang, Bin Jiang","doi":"10.1109/ISAS59543.2023.10164609","DOIUrl":null,"url":null,"abstract":"A novel potential function multi-agent deep deterministic policy gradient (PF-MADDPG) algorithm is proposed for the multi-agent Attacker-Defender-Target (ADT). A multi-agent continuous state space and a continuous action space are established. The potential function rewards of target and defenders are designed to accelerate the game confrontation training speed, and the MADDPG algorithm is utilized to obtain effective strategies, so as to describe the influence of different actions on attackers. Finally, simulations are given to verify the effectiveness of the proposed PF-MADDPG algorithm.","PeriodicalId":199115,"journal":{"name":"2023 6th International Symposium on Autonomous Systems (ISAS)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Agent Cooperative Attacker-Defender-Target Task Decision Based on PF-MADDPG\",\"authors\":\"Maomao Zhao, Shaojie Zhang, Bin Jiang\",\"doi\":\"10.1109/ISAS59543.2023.10164609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel potential function multi-agent deep deterministic policy gradient (PF-MADDPG) algorithm is proposed for the multi-agent Attacker-Defender-Target (ADT). A multi-agent continuous state space and a continuous action space are established. The potential function rewards of target and defenders are designed to accelerate the game confrontation training speed, and the MADDPG algorithm is utilized to obtain effective strategies, so as to describe the influence of different actions on attackers. Finally, simulations are given to verify the effectiveness of the proposed PF-MADDPG algorithm.\",\"PeriodicalId\":199115,\"journal\":{\"name\":\"2023 6th International Symposium on Autonomous Systems (ISAS)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 6th International Symposium on Autonomous Systems (ISAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAS59543.2023.10164609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 6th International Symposium on Autonomous Systems (ISAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAS59543.2023.10164609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对多智能体攻击-防御-目标(ADT)问题,提出了一种新的潜在函数多智能体深度确定性策略梯度(PF-MADDPG)算法。建立了多智能体连续状态空间和连续动作空间。设计目标和防御方的潜在函数奖励,加快博弈对抗训练速度,利用MADDPG算法获取有效策略,描述不同动作对攻击方的影响。最后通过仿真验证了所提出的pf - madpg算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-Agent Cooperative Attacker-Defender-Target Task Decision Based on PF-MADDPG
A novel potential function multi-agent deep deterministic policy gradient (PF-MADDPG) algorithm is proposed for the multi-agent Attacker-Defender-Target (ADT). A multi-agent continuous state space and a continuous action space are established. The potential function rewards of target and defenders are designed to accelerate the game confrontation training speed, and the MADDPG algorithm is utilized to obtain effective strategies, so as to describe the influence of different actions on attackers. Finally, simulations are given to verify the effectiveness of the proposed PF-MADDPG algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new type of video text automatic recognition method and its application in film and television works H∞ state feedback control for fuzzy singular Markovian jump systems with constant time delays and impulsive perturbations MMSTP: Multi-modal Spatiotemporal Feature Fusion Network for Precipitation Prediction Digital twin based bearing fault simulation modeling strategy and display dynamics End-to-End Model-Based Gait Recognition with Matching Module Based on Graph Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1