使用混合网络扩展模型处理内存中的LSTM

Yu Gong, Tingting Xu, Bo Liu, Wei-qi Ge, Jinjiang Yang, Jun Yang, Longxing Shi
{"title":"使用混合网络扩展模型处理内存中的LSTM","authors":"Yu Gong, Tingting Xu, Bo Liu, Wei-qi Ge, Jinjiang Yang, Jun Yang, Longxing Shi","doi":"10.1109/SiPS.2017.8110011","DOIUrl":null,"url":null,"abstract":"With the rapidly increasing applications of deep learning, LSTM-RNNs are widely used. Meanwhile, the complex data dependence and intensive computation limit the performance of the accelerators. In this paper, we first proposed a hybrid network expansion model to exploit the finegrained data parallelism. Based on the model, we implemented a Reconfigurable Processing Unit(RPU) using Processing In Memory(PIM) units. Our work shows that the gates and cells in LSTM can be partitioned to fundamental operations and then recombined and mapped into heterogeneous computing components. The experimental results show that, implemented on 45nm CMOS process, the proposed RPU with size of 1.51 mm2 and power of 413 mw achieves 309 GOPS/W in power efficiency, and is 1.7 χ better than state-of-the-art reconfigurable architecture.","PeriodicalId":251688,"journal":{"name":"2017 IEEE International Workshop on Signal Processing Systems (SiPS)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Processing LSTM in memory using hybrid network expansion model\",\"authors\":\"Yu Gong, Tingting Xu, Bo Liu, Wei-qi Ge, Jinjiang Yang, Jun Yang, Longxing Shi\",\"doi\":\"10.1109/SiPS.2017.8110011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapidly increasing applications of deep learning, LSTM-RNNs are widely used. Meanwhile, the complex data dependence and intensive computation limit the performance of the accelerators. In this paper, we first proposed a hybrid network expansion model to exploit the finegrained data parallelism. Based on the model, we implemented a Reconfigurable Processing Unit(RPU) using Processing In Memory(PIM) units. Our work shows that the gates and cells in LSTM can be partitioned to fundamental operations and then recombined and mapped into heterogeneous computing components. The experimental results show that, implemented on 45nm CMOS process, the proposed RPU with size of 1.51 mm2 and power of 413 mw achieves 309 GOPS/W in power efficiency, and is 1.7 χ better than state-of-the-art reconfigurable architecture.\",\"PeriodicalId\":251688,\"journal\":{\"name\":\"2017 IEEE International Workshop on Signal Processing Systems (SiPS)\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Workshop on Signal Processing Systems (SiPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SiPS.2017.8110011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Workshop on Signal Processing Systems (SiPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS.2017.8110011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着深度学习应用的迅速增加,lstm - rnn得到了广泛的应用。同时,复杂的数据依赖性和密集的计算量限制了加速器的性能。本文首先提出了一种利用细粒度数据并行性的混合网络扩展模型。基于该模型,我们使用内存处理(PIM)单元实现了可重构处理单元(RPU)。我们的工作表明,LSTM中的门和单元可以划分为基本操作,然后重新组合并映射为异构计算组件。实验结果表明,在45nm CMOS工艺上实现的RPU尺寸为1.51 mm2,功耗为413 mw,功率效率为309 GOPS/W,比目前最先进的可重构架构提高1.7 χ。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Processing LSTM in memory using hybrid network expansion model
With the rapidly increasing applications of deep learning, LSTM-RNNs are widely used. Meanwhile, the complex data dependence and intensive computation limit the performance of the accelerators. In this paper, we first proposed a hybrid network expansion model to exploit the finegrained data parallelism. Based on the model, we implemented a Reconfigurable Processing Unit(RPU) using Processing In Memory(PIM) units. Our work shows that the gates and cells in LSTM can be partitioned to fundamental operations and then recombined and mapped into heterogeneous computing components. The experimental results show that, implemented on 45nm CMOS process, the proposed RPU with size of 1.51 mm2 and power of 413 mw achieves 309 GOPS/W in power efficiency, and is 1.7 χ better than state-of-the-art reconfigurable architecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysing the performance of divide-and-conquer sequential matrix diagonalisation for large broadband sensor arrays Design space exploration of dataflow-based Smith-Waterman FPGA implementations Hardware error correction using local syndromes A stochastic number representation for fully homomorphic cryptography Statistical analysis of Post-HEVC encoded videos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1