基于原型的规则——一种理解数据的新方法

Wlodzislaw Duch, K. Grudzinski
{"title":"基于原型的规则——一种理解数据的新方法","authors":"Wlodzislaw Duch, K. Grudzinski","doi":"10.1109/IJCNN.2001.938446","DOIUrl":null,"url":null,"abstract":"Logical rules are not the only way to understand the structure of data. Prototype-based rules evaluate similarity to a small set of prototypes using optimized similarity measures. Such rules include crisp and fuzzy logic rules as special cases and are natural way of categorization from psychological point of view. An elimination procedure selecting good prototypes from a training set has been described. Illustrative applications on several datasets show that a few prototypes may indeed explain the data structure.","PeriodicalId":346955,"journal":{"name":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","volume":"235 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Prototype based rules-a new way to understand the data\",\"authors\":\"Wlodzislaw Duch, K. Grudzinski\",\"doi\":\"10.1109/IJCNN.2001.938446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Logical rules are not the only way to understand the structure of data. Prototype-based rules evaluate similarity to a small set of prototypes using optimized similarity measures. Such rules include crisp and fuzzy logic rules as special cases and are natural way of categorization from psychological point of view. An elimination procedure selecting good prototypes from a training set has been described. Illustrative applications on several datasets show that a few prototypes may indeed explain the data structure.\",\"PeriodicalId\":346955,\"journal\":{\"name\":\"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)\",\"volume\":\"235 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2001.938446\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2001.938446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

逻辑规则并不是理解数据结构的唯一方法。基于原型的规则使用优化的相似性度量来评估与一小组原型的相似性。这种规则包括作为特例的清晰逻辑规则和模糊逻辑规则,从心理学的角度来看,这是一种自然的分类方式。描述了从训练集中选择好的原型的消除过程。在几个数据集上的说明性应用表明,一些原型确实可以解释数据结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prototype based rules-a new way to understand the data
Logical rules are not the only way to understand the structure of data. Prototype-based rules evaluate similarity to a small set of prototypes using optimized similarity measures. Such rules include crisp and fuzzy logic rules as special cases and are natural way of categorization from psychological point of view. An elimination procedure selecting good prototypes from a training set has been described. Illustrative applications on several datasets show that a few prototypes may indeed explain the data structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chaotic analog associative memory Texture based segmentation of cell images using neural networks and mathematical morphology Center reduction algorithm for the modified probabilistic neural network equalizer Predicting the nonlinear dynamics of biological neurons using support vector machines with different kernels Sliding mode control of nonlinear systems using Gaussian radial basis function neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1