{"title":"面向实时单阶段引用表达式理解的实体关系融合","authors":"Hang Yu, Weixin Li, Jiankai Li, Ye Du","doi":"10.1145/3469877.3490592","DOIUrl":null,"url":null,"abstract":"Referring Expression Comprehension (REC) is the task of grounding object which is referred by the language expression. Previous one-stage REC methods usually use one single language feature vector to represent the whole query for grounding and no reasoning between different objects is performed despite the rich relation cues of objects contained in the language expression, which depresses their grounding accuracy. Additionally, these methods mostly use the feature pyramid networks for multi-scale visual object feature extraction but ground on different feature layers separately, neglecting the connections between objects with different scales. To address these problems, we propose a novel one-stage REC method, i.e. the Entity Relation Fusion Network (ERFN) to locate referred object by relation guided reasoning on different objects. In ERFN, instead of grounding objects at each layer separately, we propose a Language Guided Multi-Scale Fusion (LGMSF) model to utilize language to guide the fusion of representations of objects with different scales into one feature map.For modeling connections between different objects, we design a Relation Guided Feature Fusion (RGFF) model that extracts entities in the language expression to enhance the referred entity feature in the visual object feature map, and further extracts relations to guide object feature fusion based on the self-attention mechanism. Experimental results show that our method is competitive with the state-of-the-art one-stage and two-stage REC methods, and can also keep inferring in real time.","PeriodicalId":210974,"journal":{"name":"ACM Multimedia Asia","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entity Relation Fusion for Real-Time One-Stage Referring Expression Comprehension\",\"authors\":\"Hang Yu, Weixin Li, Jiankai Li, Ye Du\",\"doi\":\"10.1145/3469877.3490592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Referring Expression Comprehension (REC) is the task of grounding object which is referred by the language expression. Previous one-stage REC methods usually use one single language feature vector to represent the whole query for grounding and no reasoning between different objects is performed despite the rich relation cues of objects contained in the language expression, which depresses their grounding accuracy. Additionally, these methods mostly use the feature pyramid networks for multi-scale visual object feature extraction but ground on different feature layers separately, neglecting the connections between objects with different scales. To address these problems, we propose a novel one-stage REC method, i.e. the Entity Relation Fusion Network (ERFN) to locate referred object by relation guided reasoning on different objects. In ERFN, instead of grounding objects at each layer separately, we propose a Language Guided Multi-Scale Fusion (LGMSF) model to utilize language to guide the fusion of representations of objects with different scales into one feature map.For modeling connections between different objects, we design a Relation Guided Feature Fusion (RGFF) model that extracts entities in the language expression to enhance the referred entity feature in the visual object feature map, and further extracts relations to guide object feature fusion based on the self-attention mechanism. Experimental results show that our method is competitive with the state-of-the-art one-stage and two-stage REC methods, and can also keep inferring in real time.\",\"PeriodicalId\":210974,\"journal\":{\"name\":\"ACM Multimedia Asia\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Multimedia Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3469877.3490592\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Multimedia Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469877.3490592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Entity Relation Fusion for Real-Time One-Stage Referring Expression Comprehension
Referring Expression Comprehension (REC) is the task of grounding object which is referred by the language expression. Previous one-stage REC methods usually use one single language feature vector to represent the whole query for grounding and no reasoning between different objects is performed despite the rich relation cues of objects contained in the language expression, which depresses their grounding accuracy. Additionally, these methods mostly use the feature pyramid networks for multi-scale visual object feature extraction but ground on different feature layers separately, neglecting the connections between objects with different scales. To address these problems, we propose a novel one-stage REC method, i.e. the Entity Relation Fusion Network (ERFN) to locate referred object by relation guided reasoning on different objects. In ERFN, instead of grounding objects at each layer separately, we propose a Language Guided Multi-Scale Fusion (LGMSF) model to utilize language to guide the fusion of representations of objects with different scales into one feature map.For modeling connections between different objects, we design a Relation Guided Feature Fusion (RGFF) model that extracts entities in the language expression to enhance the referred entity feature in the visual object feature map, and further extracts relations to guide object feature fusion based on the self-attention mechanism. Experimental results show that our method is competitive with the state-of-the-art one-stage and two-stage REC methods, and can also keep inferring in real time.