{"title":"优化短段交替和蛇形微带结构以减少远端串扰","authors":"D. Becerra-Perez, J. Rayas-Sánchez","doi":"10.1109/EPEPS.2012.6457854","DOIUrl":null,"url":null,"abstract":"Crosstalk is a signal integrity effect that negatively impacts high-speed digital designs, especially those with dense routing. Several techniques have been proposed to reduce crosstalk. One of them consists of using innovative microstrip structures, such as the stub-alternated and the serpentine structures, which are intended to reduce far-end crosstalk. However, these structures also present a negative effect on return loss and near-end crosstalk. In this paper, these two structures are optimized for far-end crosstalk reduction while minimizing their negative impact on reflections and near-end crosstalk. A genetic algorithm complemented with the Nelder-Mead method is employed for direct optimization, using highly accurate EM simulations in Sonnet driven from Python.","PeriodicalId":188377,"journal":{"name":"2012 IEEE 21st Conference on Electrical Performance of Electronic Packaging and Systems","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimization of the stub-alternated and serpentine microstrip structures to minimize far-end crosstalk\",\"authors\":\"D. Becerra-Perez, J. Rayas-Sánchez\",\"doi\":\"10.1109/EPEPS.2012.6457854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crosstalk is a signal integrity effect that negatively impacts high-speed digital designs, especially those with dense routing. Several techniques have been proposed to reduce crosstalk. One of them consists of using innovative microstrip structures, such as the stub-alternated and the serpentine structures, which are intended to reduce far-end crosstalk. However, these structures also present a negative effect on return loss and near-end crosstalk. In this paper, these two structures are optimized for far-end crosstalk reduction while minimizing their negative impact on reflections and near-end crosstalk. A genetic algorithm complemented with the Nelder-Mead method is employed for direct optimization, using highly accurate EM simulations in Sonnet driven from Python.\",\"PeriodicalId\":188377,\"journal\":{\"name\":\"2012 IEEE 21st Conference on Electrical Performance of Electronic Packaging and Systems\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 21st Conference on Electrical Performance of Electronic Packaging and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPEPS.2012.6457854\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 21st Conference on Electrical Performance of Electronic Packaging and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEPS.2012.6457854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimization of the stub-alternated and serpentine microstrip structures to minimize far-end crosstalk
Crosstalk is a signal integrity effect that negatively impacts high-speed digital designs, especially those with dense routing. Several techniques have been proposed to reduce crosstalk. One of them consists of using innovative microstrip structures, such as the stub-alternated and the serpentine structures, which are intended to reduce far-end crosstalk. However, these structures also present a negative effect on return loss and near-end crosstalk. In this paper, these two structures are optimized for far-end crosstalk reduction while minimizing their negative impact on reflections and near-end crosstalk. A genetic algorithm complemented with the Nelder-Mead method is employed for direct optimization, using highly accurate EM simulations in Sonnet driven from Python.