归一化LMS和归一化最小均值m估计算法的收敛性分析

S. Chan, Y. Zhou
{"title":"归一化LMS和归一化最小均值m估计算法的收敛性分析","authors":"S. Chan, Y. Zhou","doi":"10.1109/ISSPIT.2007.4458106","DOIUrl":null,"url":null,"abstract":"This paper studies the convergence behaviors of the normalized least mean square (NLMS) and the normalized least mean M-estimate (NLMM) algorithms. Our analysis is obtained by extending the framework of Bershad [6], [7], which were previously reported for the NLMS algorithm with Gaussian inputs. Due to the difficulties in evaluating certain expectations involved, in [6], [7] the behaviors of the NLMS algorithm for general eigenvalue distributions of input autocorrelation matrix were not fully analyzed. In this paper, using an extension of Price's theorem to mixture Gaussian distributions and by introducing certain special integral functions, closed-form results of these expectations are obtained which allow us to interpret the convergence performance of both the NLMS and the NLMM algorithms in Contaminated Gaussian noise. The validity of the proposed analysis is verified through computer simulations.","PeriodicalId":299267,"journal":{"name":"2007 IEEE International Symposium on Signal Processing and Information Technology","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"On the Convergence Analysis of the Normalized LMS and the Normalized Least Mean M-Estimate Algorithms\",\"authors\":\"S. Chan, Y. Zhou\",\"doi\":\"10.1109/ISSPIT.2007.4458106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the convergence behaviors of the normalized least mean square (NLMS) and the normalized least mean M-estimate (NLMM) algorithms. Our analysis is obtained by extending the framework of Bershad [6], [7], which were previously reported for the NLMS algorithm with Gaussian inputs. Due to the difficulties in evaluating certain expectations involved, in [6], [7] the behaviors of the NLMS algorithm for general eigenvalue distributions of input autocorrelation matrix were not fully analyzed. In this paper, using an extension of Price's theorem to mixture Gaussian distributions and by introducing certain special integral functions, closed-form results of these expectations are obtained which allow us to interpret the convergence performance of both the NLMS and the NLMM algorithms in Contaminated Gaussian noise. The validity of the proposed analysis is verified through computer simulations.\",\"PeriodicalId\":299267,\"journal\":{\"name\":\"2007 IEEE International Symposium on Signal Processing and Information Technology\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Symposium on Signal Processing and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPIT.2007.4458106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Symposium on Signal Processing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2007.4458106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

研究了归一化最小均方(NLMS)算法和归一化最小均值估计(NLMM)算法的收敛性。我们的分析是通过扩展Bershad[6],[7]的框架得到的,这是之前关于高斯输入的NLMS算法的报道。由于所涉及的某些期望难以评估,在[6]、[7]中,没有充分分析NLMS算法对输入自相关矩阵的一般特征值分布的行为。本文将Price定理推广到混合高斯分布,并引入一些特殊的积分函数,得到了这些期望的封闭形式结果,从而解释了NLMS和NLMM算法在污染高斯噪声下的收敛性能。通过计算机仿真验证了所提分析的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the Convergence Analysis of the Normalized LMS and the Normalized Least Mean M-Estimate Algorithms
This paper studies the convergence behaviors of the normalized least mean square (NLMS) and the normalized least mean M-estimate (NLMM) algorithms. Our analysis is obtained by extending the framework of Bershad [6], [7], which were previously reported for the NLMS algorithm with Gaussian inputs. Due to the difficulties in evaluating certain expectations involved, in [6], [7] the behaviors of the NLMS algorithm for general eigenvalue distributions of input autocorrelation matrix were not fully analyzed. In this paper, using an extension of Price's theorem to mixture Gaussian distributions and by introducing certain special integral functions, closed-form results of these expectations are obtained which allow us to interpret the convergence performance of both the NLMS and the NLMM algorithms in Contaminated Gaussian noise. The validity of the proposed analysis is verified through computer simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Distribution of a Stochastic Control Algorithm Applied to Gas Storage Valuation Efficient Synthesis of Arbitrary Viewpoint Images Using 3-D Geometric Model and Mesh-Based Specular Reflection Tracing Relative Iris Codes Towards Evaluation of Phonics Method for Teaching of Reading Using Artificial Neural Networks (A Cognitive Modeling Approach) A concept of mathematical methods for the optimization of the post-processing of nuclear resonance spectra of the human skeletal musculature
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1