基于参考点进化算法的模块化知识驱动突变算子

Henrik Smedberg, Sunith Bandaru
{"title":"基于参考点进化算法的模块化知识驱动突变算子","authors":"Henrik Smedberg, Sunith Bandaru","doi":"10.1109/CEC55065.2022.9870268","DOIUrl":null,"url":null,"abstract":"Although an entire frontier of Pareto-optimal solutions exists for multi-objective optimization problems, in practice, decision makers are often only interested in a small subset of these solutions, called the region of interest. Specialized optimizers, such as reference-point based evolutionary algorithms, exist that can focus the search to only find solutions inside this region of interest. These algorithms typically only modify the selection mechanism of regular multi-objective optimizers to preferentially select solutions that conform to the reference point. However, a more effective search may be performed by additionally modifying the variation mechanism of the optimizers, namely the crossover and the mutation operators, to preferentially generate solutions conforming to the reference point. In this paper, we propose a modular mutation operator that uses a recent knowledge discovery technique to first find decision rules unique to the preferred solutions in each generation. These rules are then used to build an empirical distribution in the decision space that can be sampled to generate new mutated solutions which are more likely to be closer to the preferred solutions. The operator is modular in the sense that it can be used with any existing reference-point based evolutionary algorithm by simply replacing the mutation operator. We incorporate the proposed knowledge-driven mutation operator into three such algorithms, and through benchmark test problems up to 10 objectives, demonstrate that their performance improves significantly in the majority of cases according to two different performance indicators.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Modular Knowledge-Driven Mutation Operator for Reference-Point Based Evolutionary Algorithms\",\"authors\":\"Henrik Smedberg, Sunith Bandaru\",\"doi\":\"10.1109/CEC55065.2022.9870268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although an entire frontier of Pareto-optimal solutions exists for multi-objective optimization problems, in practice, decision makers are often only interested in a small subset of these solutions, called the region of interest. Specialized optimizers, such as reference-point based evolutionary algorithms, exist that can focus the search to only find solutions inside this region of interest. These algorithms typically only modify the selection mechanism of regular multi-objective optimizers to preferentially select solutions that conform to the reference point. However, a more effective search may be performed by additionally modifying the variation mechanism of the optimizers, namely the crossover and the mutation operators, to preferentially generate solutions conforming to the reference point. In this paper, we propose a modular mutation operator that uses a recent knowledge discovery technique to first find decision rules unique to the preferred solutions in each generation. These rules are then used to build an empirical distribution in the decision space that can be sampled to generate new mutated solutions which are more likely to be closer to the preferred solutions. The operator is modular in the sense that it can be used with any existing reference-point based evolutionary algorithm by simply replacing the mutation operator. We incorporate the proposed knowledge-driven mutation operator into three such algorithms, and through benchmark test problems up to 10 objectives, demonstrate that their performance improves significantly in the majority of cases according to two different performance indicators.\",\"PeriodicalId\":153241,\"journal\":{\"name\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC55065.2022.9870268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC55065.2022.9870268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

尽管存在多目标优化问题的整个帕累托最优解边界,但在实践中,决策者通常只对这些解的一小部分感兴趣,称为感兴趣区域。存在专门的优化器,例如基于参考点的进化算法,可以将搜索集中在只查找感兴趣区域内的解决方案。这些算法通常只修改常规多目标优化器的选择机制,优先选择符合参考点的解。然而,通过另外修改优化器的变异机制,即交叉和变异算子,可以执行更有效的搜索,以优先生成符合参考点的解。在本文中,我们提出了一种模块化突变算子,该算子使用最新的知识发现技术首先找到每一代优选解的唯一决策规则。然后使用这些规则在决策空间中构建经验分布,该分布可以被采样以生成更可能接近首选解决方案的新突变解决方案。该算子是模块化的,这意味着它可以通过简单地替换突变算子与任何现有的基于参考点的进化算法一起使用。我们将所提出的知识驱动突变算子整合到三种这样的算法中,并通过多达10个目标的基准测试问题,证明根据两种不同的性能指标,它们的性能在大多数情况下都有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Modular Knowledge-Driven Mutation Operator for Reference-Point Based Evolutionary Algorithms
Although an entire frontier of Pareto-optimal solutions exists for multi-objective optimization problems, in practice, decision makers are often only interested in a small subset of these solutions, called the region of interest. Specialized optimizers, such as reference-point based evolutionary algorithms, exist that can focus the search to only find solutions inside this region of interest. These algorithms typically only modify the selection mechanism of regular multi-objective optimizers to preferentially select solutions that conform to the reference point. However, a more effective search may be performed by additionally modifying the variation mechanism of the optimizers, namely the crossover and the mutation operators, to preferentially generate solutions conforming to the reference point. In this paper, we propose a modular mutation operator that uses a recent knowledge discovery technique to first find decision rules unique to the preferred solutions in each generation. These rules are then used to build an empirical distribution in the decision space that can be sampled to generate new mutated solutions which are more likely to be closer to the preferred solutions. The operator is modular in the sense that it can be used with any existing reference-point based evolutionary algorithm by simply replacing the mutation operator. We incorporate the proposed knowledge-driven mutation operator into three such algorithms, and through benchmark test problems up to 10 objectives, demonstrate that their performance improves significantly in the majority of cases according to two different performance indicators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impacts of Single-objective Landscapes on Multi-objective Optimization Cooperative Multi-objective Topology Optimization Using Clustering and Metamodeling Global and Local Area Coverage Path Planner for a Reconfigurable Robot A New Integer Linear Program and A Grouping Genetic Algorithm with Controlled Gene Transmission for Joint Order Batching and Picking Routing Problem Test Case Prioritization and Reduction Using Hybrid Quantum-behaved Particle Swarm Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1