GDP增长预测:自回归综合移动平均模型的应用

Y. Awel
{"title":"GDP增长预测:自回归综合移动平均模型的应用","authors":"Y. Awel","doi":"10.29145/EER/12/010201","DOIUrl":null,"url":null,"abstract":"This paper uses Box-Jenkins approach to model and forecast real GDP growth in Ethiopia. Such an approach could easily provide forecast for key macroeconomic variables in limited data environment. Based on the approach, the paper estimates Autoregressive Integrated Moving Average ARIMA (1,1,1) model and forecasts real GDP growth. Both the in-sample fit and pseudo-out of sample forecasts show that the ARIMA model’s performance are good and better than other forecasts.","PeriodicalId":149171,"journal":{"name":"Empirical Economic Review","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Forecasting GDP Growth: Application of Autoregressive Integrated Moving Average Model\",\"authors\":\"Y. Awel\",\"doi\":\"10.29145/EER/12/010201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper uses Box-Jenkins approach to model and forecast real GDP growth in Ethiopia. Such an approach could easily provide forecast for key macroeconomic variables in limited data environment. Based on the approach, the paper estimates Autoregressive Integrated Moving Average ARIMA (1,1,1) model and forecasts real GDP growth. Both the in-sample fit and pseudo-out of sample forecasts show that the ARIMA model’s performance are good and better than other forecasts.\",\"PeriodicalId\":149171,\"journal\":{\"name\":\"Empirical Economic Review\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Empirical Economic Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29145/EER/12/010201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Empirical Economic Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29145/EER/12/010201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文采用Box-Jenkins方法对埃塞俄比亚实际GDP增长进行建模和预测。这种方法可以在有限的数据环境下很容易地对关键宏观经济变量进行预测。基于该方法,本文估计了自回归综合移动平均ARIMA(1,1,1)模型,并对实际GDP增长进行了预测。样本内拟合和伪样本外预测均表明,ARIMA模型的预测效果良好,优于其他预测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Forecasting GDP Growth: Application of Autoregressive Integrated Moving Average Model
This paper uses Box-Jenkins approach to model and forecast real GDP growth in Ethiopia. Such an approach could easily provide forecast for key macroeconomic variables in limited data environment. Based on the approach, the paper estimates Autoregressive Integrated Moving Average ARIMA (1,1,1) model and forecasts real GDP growth. Both the in-sample fit and pseudo-out of sample forecasts show that the ARIMA model’s performance are good and better than other forecasts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Analysis of Child Labor and its Subjective Well-being: Evidence from Khyber Pakhtunkhwa, Pakistan Trade Opportunities, Competitiveness, and Trade Potential in Pakistan: An Analysis of GCC Regional Countries Farmers’ Characteristics, Crop Diversification and Agricultural Constraints affecting Crop Cultivation in Sindh province of Pakistan: An Empirical Evidence Macro-Stress Testing NPLs in the Banking Sector in Namibia Exploring the Relationship between Project Planning and Timely Completion of a Project through Confirmatory Factor Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1