基于多尺度三维卷积神经网络的心血管磁共振图像中严重异常右心室快速全自动分割

A. Giannakidis, K. Kamnitsas, V. Spadotto, J. Keegan, Gillian Smith, B. Glocker, D. Rueckert, S. Ernst, M. Gatzoulis, D. Pennell, S. Babu-Narayan, D. Firmin
{"title":"基于多尺度三维卷积神经网络的心血管磁共振图像中严重异常右心室快速全自动分割","authors":"A. Giannakidis, K. Kamnitsas, V. Spadotto, J. Keegan, Gillian Smith, B. Glocker, D. Rueckert, S. Ernst, M. Gatzoulis, D. Pennell, S. Babu-Narayan, D. Firmin","doi":"10.1109/SITIS.2016.16","DOIUrl":null,"url":null,"abstract":"Cardiac magnetic resonance (CMR) is regarded as the reference examination for cardiac morphology in tetralogy of Fallot (ToF) patients allowing images of high spatial resolution and high contrast. The detailed knowledge of the right ventricular anatomy is critical in ToF management. The segmentation of the right ventricle (RV) in CMR images from ToF patients is a challenging task due to the high shape and image quality variability. In this paper we propose a fully automatic deep learning-based framework to segment the RV from CMR anatomical images of the whole heart. We adopt a 3D multi-scale deep convolutional neural network to identify pixels that belong to the RV. Our robust segmentation framework was tested on 26 ToF patients achieving a Dice similarity coefficient of 0.8281±0.1010 with reference to manual annotations performed by expert cardiologists. The proposed technique is also computationally efficient, which may further facilitate its adoption in the clinical routine.","PeriodicalId":403704,"journal":{"name":"2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Fast Fully Automatic Segmentation of the Severely Abnormal Human Right Ventricle from Cardiovascular Magnetic Resonance Images Using a Multi-Scale 3D Convolutional Neural Network\",\"authors\":\"A. Giannakidis, K. Kamnitsas, V. Spadotto, J. Keegan, Gillian Smith, B. Glocker, D. Rueckert, S. Ernst, M. Gatzoulis, D. Pennell, S. Babu-Narayan, D. Firmin\",\"doi\":\"10.1109/SITIS.2016.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cardiac magnetic resonance (CMR) is regarded as the reference examination for cardiac morphology in tetralogy of Fallot (ToF) patients allowing images of high spatial resolution and high contrast. The detailed knowledge of the right ventricular anatomy is critical in ToF management. The segmentation of the right ventricle (RV) in CMR images from ToF patients is a challenging task due to the high shape and image quality variability. In this paper we propose a fully automatic deep learning-based framework to segment the RV from CMR anatomical images of the whole heart. We adopt a 3D multi-scale deep convolutional neural network to identify pixels that belong to the RV. Our robust segmentation framework was tested on 26 ToF patients achieving a Dice similarity coefficient of 0.8281±0.1010 with reference to manual annotations performed by expert cardiologists. The proposed technique is also computationally efficient, which may further facilitate its adoption in the clinical routine.\",\"PeriodicalId\":403704,\"journal\":{\"name\":\"2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SITIS.2016.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITIS.2016.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

心脏磁共振(CMR)被认为是法洛四联症(ToF)患者心脏形态学的参考检查,可以获得高空间分辨率和高对比度的图像。对右心室解剖的详细了解对ToF的治疗至关重要。由于右心室形状和图像质量的高可变性,在ToF患者的CMR图像中分割右心室(RV)是一项具有挑战性的任务。在本文中,我们提出了一种基于全自动深度学习的框架,用于从整个心脏的CMR解剖图像中分割RV。我们采用三维多尺度深度卷积神经网络来识别属于RV的像素。我们的鲁棒分割框架在26例ToF患者中进行了测试,参考心脏病专家的手工注释,Dice相似系数为0.8281±0.1010。所提出的技术也具有计算效率,这可能进一步促进其在临床常规中的采用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast Fully Automatic Segmentation of the Severely Abnormal Human Right Ventricle from Cardiovascular Magnetic Resonance Images Using a Multi-Scale 3D Convolutional Neural Network
Cardiac magnetic resonance (CMR) is regarded as the reference examination for cardiac morphology in tetralogy of Fallot (ToF) patients allowing images of high spatial resolution and high contrast. The detailed knowledge of the right ventricular anatomy is critical in ToF management. The segmentation of the right ventricle (RV) in CMR images from ToF patients is a challenging task due to the high shape and image quality variability. In this paper we propose a fully automatic deep learning-based framework to segment the RV from CMR anatomical images of the whole heart. We adopt a 3D multi-scale deep convolutional neural network to identify pixels that belong to the RV. Our robust segmentation framework was tested on 26 ToF patients achieving a Dice similarity coefficient of 0.8281±0.1010 with reference to manual annotations performed by expert cardiologists. The proposed technique is also computationally efficient, which may further facilitate its adoption in the clinical routine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Consensus as a Nash Equilibrium of a Dynamic Game An Ontology-Based Augmented Reality Application Exploring Contextual Data of Cultural Heritage Sites All-in-One Mobile Outdoor Augmented Reality Framework for Cultural Heritage Sites 3D Visual-Based Human Motion Descriptors: A Review Tags and Information Recollection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1