使用智能鞋垫传感器进行步态类型分类

Sang-Il Choi, Sungsin Lee, Hee-Chan Park, Hyunil Kim
{"title":"使用智能鞋垫传感器进行步态类型分类","authors":"Sang-Il Choi, Sungsin Lee, Hee-Chan Park, Hyunil Kim","doi":"10.1109/TENCON.2018.8650147","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a gait type classification method using various sensors in a smart insole. The measured data are normalized to the unit step of the same length in order to reduce the variation of the speed according to the measurement point and the situation even within the same gait type. From the normalized data of the individual sensors, the discriminant features useful for gait type classification are extracted by using the Null-Space Linear Discriminant Analysis (NLDA), one of the representative discriminant analysis methods. As a result of experiments on the data measured for the seven gait types, our method gives a good performance of gait type classification.","PeriodicalId":132900,"journal":{"name":"TENCON 2018 - 2018 IEEE Region 10 Conference","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Gait Type Classification Using Smart Insole Sensors\",\"authors\":\"Sang-Il Choi, Sungsin Lee, Hee-Chan Park, Hyunil Kim\",\"doi\":\"10.1109/TENCON.2018.8650147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a gait type classification method using various sensors in a smart insole. The measured data are normalized to the unit step of the same length in order to reduce the variation of the speed according to the measurement point and the situation even within the same gait type. From the normalized data of the individual sensors, the discriminant features useful for gait type classification are extracted by using the Null-Space Linear Discriminant Analysis (NLDA), one of the representative discriminant analysis methods. As a result of experiments on the data measured for the seven gait types, our method gives a good performance of gait type classification.\",\"PeriodicalId\":132900,\"journal\":{\"name\":\"TENCON 2018 - 2018 IEEE Region 10 Conference\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TENCON 2018 - 2018 IEEE Region 10 Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCON.2018.8650147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2018 - 2018 IEEE Region 10 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2018.8650147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在本文中,我们提出了一种使用智能鞋垫中的各种传感器进行步态类型分类的方法。将测量数据归一化为相同长度的单位步长,以减少在相同步态类型下,速度随测点和情况的变化。从各个传感器的归一化数据中,利用具有代表性的判别分析方法之一的零空间线性判别分析(NLDA)提取出有助于步态类型分类的判别特征。对7种步态类型的实测数据进行了实验,结果表明该方法具有较好的步态类型分类效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gait Type Classification Using Smart Insole Sensors
In this paper, we propose a gait type classification method using various sensors in a smart insole. The measured data are normalized to the unit step of the same length in order to reduce the variation of the speed according to the measurement point and the situation even within the same gait type. From the normalized data of the individual sensors, the discriminant features useful for gait type classification are extracted by using the Null-Space Linear Discriminant Analysis (NLDA), one of the representative discriminant analysis methods. As a result of experiments on the data measured for the seven gait types, our method gives a good performance of gait type classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Frequency Profile Improvement of a Microgrid through Aggregated Demand Response A Study on Coarse Stage Bit Allocation to Improve Power Efficiency of a 10-bit Coarse-Fine SAR ADC Implemented in 65nm CMOS Process for Environmental Sensing Applications Analysis on the Limitation of Number of Channels in WDM System Based on Photonic Microring Resonator BMK Stick: IMU-Based Motion Recognition Air Mouse and Five-Multikey Keyboard Demand Response for Enhancing Survivability of Microgrids During Islanded Operation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1