包络跟踪优化的功率放大器设计

G. Collins, J. Fisher, F. Radulescu, J. Barner, S. Sheppard, R. Worley, D. Kimball
{"title":"包络跟踪优化的功率放大器设计","authors":"G. Collins, J. Fisher, F. Radulescu, J. Barner, S. Sheppard, R. Worley, D. Kimball","doi":"10.1109/CSICS.2014.6978573","DOIUrl":null,"url":null,"abstract":"In this paper, we present the design of an inverse Class F power amplifier GaN MMIC, specifically designed for an envelope-tracking application. Power transistors are not typically characterized for the drain modulation that is fundamental to envelope tracking, and the available device models are not usually validated over the required drain bias range. Here, we used fundamental load-pull to characterize a 6×100μm GaN HEMT device over the range of drain bias voltages that would be used in the envelope-tracking PA. This data was scaled to an 8×100μm device to achieve the target output power, and these empirical load-pull models were then used in the design of the power MMIC along with harmonic design in simulation. A total of eight 8×100 μm HEMTs were used in the final design, achieving a maximum power output of 32 W at 10 GHz with a drain efficiency of greater than 45% in back-off, on a die size of less than 4 × 4 mm2 under envelope tracking.","PeriodicalId":309722,"journal":{"name":"2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Power Amplifier Design Optimized for Envelope Tracking\",\"authors\":\"G. Collins, J. Fisher, F. Radulescu, J. Barner, S. Sheppard, R. Worley, D. Kimball\",\"doi\":\"10.1109/CSICS.2014.6978573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present the design of an inverse Class F power amplifier GaN MMIC, specifically designed for an envelope-tracking application. Power transistors are not typically characterized for the drain modulation that is fundamental to envelope tracking, and the available device models are not usually validated over the required drain bias range. Here, we used fundamental load-pull to characterize a 6×100μm GaN HEMT device over the range of drain bias voltages that would be used in the envelope-tracking PA. This data was scaled to an 8×100μm device to achieve the target output power, and these empirical load-pull models were then used in the design of the power MMIC along with harmonic design in simulation. A total of eight 8×100 μm HEMTs were used in the final design, achieving a maximum power output of 32 W at 10 GHz with a drain efficiency of greater than 45% in back-off, on a die size of less than 4 × 4 mm2 under envelope tracking.\",\"PeriodicalId\":309722,\"journal\":{\"name\":\"2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSICS.2014.6978573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSICS.2014.6978573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在本文中,我们提出了一个反F类功率放大器GaN MMIC的设计,专门设计用于包络跟踪应用。功率晶体管通常不具有漏极调制的特征,而漏极调制是包络跟踪的基础,并且可用的器件模型通常不会在所需的漏极偏置范围内进行验证。在这里,我们使用基本负载-拉力来表征将用于包络跟踪PA的漏极偏置电压范围内的6×100μm GaN HEMT器件。将这些数据缩放到8×100μm器件以获得目标输出功率,然后将这些经验负载-拉力模型用于功率MMIC的设计以及仿真中的谐波设计。最终设计中共使用了8个8×100 μm hemt,在10 GHz下实现了32 W的最大功率输出,在回退时漏极效率大于45%,封装尺寸小于4 × 4 mm2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Power Amplifier Design Optimized for Envelope Tracking
In this paper, we present the design of an inverse Class F power amplifier GaN MMIC, specifically designed for an envelope-tracking application. Power transistors are not typically characterized for the drain modulation that is fundamental to envelope tracking, and the available device models are not usually validated over the required drain bias range. Here, we used fundamental load-pull to characterize a 6×100μm GaN HEMT device over the range of drain bias voltages that would be used in the envelope-tracking PA. This data was scaled to an 8×100μm device to achieve the target output power, and these empirical load-pull models were then used in the design of the power MMIC along with harmonic design in simulation. A total of eight 8×100 μm HEMTs were used in the final design, achieving a maximum power output of 32 W at 10 GHz with a drain efficiency of greater than 45% in back-off, on a die size of less than 4 × 4 mm2 under envelope tracking.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
First Pass Multi Cell Modeling Strategy for GaN Package Devices A 0.05-26 GHz Direct Conversion I/Q Modulator MMIC 12.5 THz Fco GeTe Inline Phase-Change Switch Technology for Reconfigurable RF and Switching Applications An 8-Bit 140-GHz Power-DAC Cell for IQ Transmitter Arrays with Antenna Segmentation A Compact 340 GHz 2x4 Patch Array with Integrated Subharmonic Gilber Core Mixer as a Building Block for Multi-Pixel Imaging Frontends
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1