{"title":"区间2型模糊神经网络的快速学习方法","authors":"D. Olczyk, Urszula Markowska-Kaczmar","doi":"10.1109/UKCI.2014.6930169","DOIUrl":null,"url":null,"abstract":"The Fuzzy Set Parameter Estimation algorithm is proposed for fast learning interval type-2 fuzzy neural networks applied for classification problems. Classes are disjoint. Learning consists of estimating appropriate values of fuzzy set parameters in every rule. Estimation is based on statistical properties of the training data. The experimental study confirms that it is dozens times quicker than the backpropagation method, while the classification effectiveness is comparable.","PeriodicalId":315044,"journal":{"name":"2014 14th UK Workshop on Computational Intelligence (UKCI)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast learning method of interval type-2 fuzzy neural networks\",\"authors\":\"D. Olczyk, Urszula Markowska-Kaczmar\",\"doi\":\"10.1109/UKCI.2014.6930169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Fuzzy Set Parameter Estimation algorithm is proposed for fast learning interval type-2 fuzzy neural networks applied for classification problems. Classes are disjoint. Learning consists of estimating appropriate values of fuzzy set parameters in every rule. Estimation is based on statistical properties of the training data. The experimental study confirms that it is dozens times quicker than the backpropagation method, while the classification effectiveness is comparable.\",\"PeriodicalId\":315044,\"journal\":{\"name\":\"2014 14th UK Workshop on Computational Intelligence (UKCI)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 14th UK Workshop on Computational Intelligence (UKCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UKCI.2014.6930169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 14th UK Workshop on Computational Intelligence (UKCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UKCI.2014.6930169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fast learning method of interval type-2 fuzzy neural networks
The Fuzzy Set Parameter Estimation algorithm is proposed for fast learning interval type-2 fuzzy neural networks applied for classification problems. Classes are disjoint. Learning consists of estimating appropriate values of fuzzy set parameters in every rule. Estimation is based on statistical properties of the training data. The experimental study confirms that it is dozens times quicker than the backpropagation method, while the classification effectiveness is comparable.