基于深度图像的工业生产中人体行为识别方法研究与设计

Shuo Wang, Shengping Yu, Haikuan Wang, Dakui Wu, Wenju Zhou, H. Luo
{"title":"基于深度图像的工业生产中人体行为识别方法研究与设计","authors":"Shuo Wang, Shengping Yu, Haikuan Wang, Dakui Wu, Wenju Zhou, H. Luo","doi":"10.1109/IAI55780.2022.9976693","DOIUrl":null,"url":null,"abstract":"Correct assembly behavior in industrial production is a direct means to ensure production quality and efficiency. Aiming at the problems of worker misoperation or lack of important assembly steps in the production and assembly process, a human behavior recognition method based on ToF camera is proposed. The method segments the extracted depth motion maps (DMMs) according to the differences between frames, and extracts histogram of oriented gradient (HOG) descriptors and multiscale grayscale count (MGC) descriptors as local features. Then a hierarchical DMMs multi-classifier recognition framework is built based on stacking strategy, combining support vector machine (SVM), K-nearest neighbor (KNN), random forest (RF) and XGBoost classifiers, achieving 98.2% accuracy on MSR ACTION 3D dataset and 87.1% accuracy on self-built dataset, respectively.","PeriodicalId":138951,"journal":{"name":"2022 4th International Conference on Industrial Artificial Intelligence (IAI)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Research and Design of Human Behavior Recognition Method in Industrial Production Based on Depth Image\",\"authors\":\"Shuo Wang, Shengping Yu, Haikuan Wang, Dakui Wu, Wenju Zhou, H. Luo\",\"doi\":\"10.1109/IAI55780.2022.9976693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Correct assembly behavior in industrial production is a direct means to ensure production quality and efficiency. Aiming at the problems of worker misoperation or lack of important assembly steps in the production and assembly process, a human behavior recognition method based on ToF camera is proposed. The method segments the extracted depth motion maps (DMMs) according to the differences between frames, and extracts histogram of oriented gradient (HOG) descriptors and multiscale grayscale count (MGC) descriptors as local features. Then a hierarchical DMMs multi-classifier recognition framework is built based on stacking strategy, combining support vector machine (SVM), K-nearest neighbor (KNN), random forest (RF) and XGBoost classifiers, achieving 98.2% accuracy on MSR ACTION 3D dataset and 87.1% accuracy on self-built dataset, respectively.\",\"PeriodicalId\":138951,\"journal\":{\"name\":\"2022 4th International Conference on Industrial Artificial Intelligence (IAI)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 4th International Conference on Industrial Artificial Intelligence (IAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAI55780.2022.9976693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Industrial Artificial Intelligence (IAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI55780.2022.9976693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在工业生产中,正确的装配行为是保证生产质量和效率的直接手段。针对生产装配过程中工人误操作或缺少重要装配步骤的问题,提出了一种基于ToF相机的人体行为识别方法。该方法根据帧间差异对提取的深度运动图(dm)进行分割,提取定向梯度(HOG)描述符直方图和多尺度灰度计数(MGC)描述符作为局部特征。然后,结合支持向量机(SVM)、k近邻(KNN)、随机森林(RF)和XGBoost分类器,构建了基于堆叠策略的分层dmm多分类器识别框架,在MSR ACTION 3D数据集上的准确率分别达到98.2%和87.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research and Design of Human Behavior Recognition Method in Industrial Production Based on Depth Image
Correct assembly behavior in industrial production is a direct means to ensure production quality and efficiency. Aiming at the problems of worker misoperation or lack of important assembly steps in the production and assembly process, a human behavior recognition method based on ToF camera is proposed. The method segments the extracted depth motion maps (DMMs) according to the differences between frames, and extracts histogram of oriented gradient (HOG) descriptors and multiscale grayscale count (MGC) descriptors as local features. Then a hierarchical DMMs multi-classifier recognition framework is built based on stacking strategy, combining support vector machine (SVM), K-nearest neighbor (KNN), random forest (RF) and XGBoost classifiers, achieving 98.2% accuracy on MSR ACTION 3D dataset and 87.1% accuracy on self-built dataset, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prediction of Element Component Content Based on Mechanism Analysis and Error Compensation An Improved Genetic Algorithm for Solving Tri-level Programming Problems Dynamic multi-objective optimization algorithm based on weighted differential prediction model Quality defect analysis of injection molding based on gradient enhanced Kriging model Leader-Follower Consensus Control For Multi-Spacecraft With The Attitude Observers On SO(3)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1