基于GPU的CNN实现分析

E. László, P. Szolgay, Z. Nagy
{"title":"基于GPU的CNN实现分析","authors":"E. László, P. Szolgay, Z. Nagy","doi":"10.1109/CNNA.2012.6331451","DOIUrl":null,"url":null,"abstract":"The CNN (Cellular Neural Network) is a powerful image processing architecture whose hardware implementation is extremely fast. The lack of such hardware device in a development process can be substituted by using an efficient simulator implementation. Commercially available graphics cards with high computing capabilities make this simulator feasible. The aim of this work is to present a GPU based implementation of a CNN simulator using nVidia's Fermi architecture. Different implementation approaches are considered and compared to a multi-core, multi-threaded CPU and some earlier GPU implementations. A detailed analysis of the introduced GPU implementation is presented.","PeriodicalId":387536,"journal":{"name":"2012 13th International Workshop on Cellular Nanoscale Networks and their Applications","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Analysis of a GPU based CNN implementation\",\"authors\":\"E. László, P. Szolgay, Z. Nagy\",\"doi\":\"10.1109/CNNA.2012.6331451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The CNN (Cellular Neural Network) is a powerful image processing architecture whose hardware implementation is extremely fast. The lack of such hardware device in a development process can be substituted by using an efficient simulator implementation. Commercially available graphics cards with high computing capabilities make this simulator feasible. The aim of this work is to present a GPU based implementation of a CNN simulator using nVidia's Fermi architecture. Different implementation approaches are considered and compared to a multi-core, multi-threaded CPU and some earlier GPU implementations. A detailed analysis of the introduced GPU implementation is presented.\",\"PeriodicalId\":387536,\"journal\":{\"name\":\"2012 13th International Workshop on Cellular Nanoscale Networks and their Applications\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 13th International Workshop on Cellular Nanoscale Networks and their Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNNA.2012.6331451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 13th International Workshop on Cellular Nanoscale Networks and their Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.2012.6331451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

CNN (Cellular Neural Network)是一种功能强大的图像处理架构,其硬件实现速度非常快。在开发过程中缺少这样的硬件设备可以通过使用有效的模拟器实现来代替。具有高计算能力的商用显卡使该模拟器可行。这项工作的目的是提出一个基于GPU的CNN模拟器的实现,使用nVidia的费米架构。考虑了不同的实现方法,并与多核、多线程CPU和一些早期的GPU实现进行了比较。对引入的GPU实现进行了详细的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of a GPU based CNN implementation
The CNN (Cellular Neural Network) is a powerful image processing architecture whose hardware implementation is extremely fast. The lack of such hardware device in a development process can be substituted by using an efficient simulator implementation. Commercially available graphics cards with high computing capabilities make this simulator feasible. The aim of this work is to present a GPU based implementation of a CNN simulator using nVidia's Fermi architecture. Different implementation approaches are considered and compared to a multi-core, multi-threaded CPU and some earlier GPU implementations. A detailed analysis of the introduced GPU implementation is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synchronization in cellular spin torque oscillator arrays CNN based dark signal non-uniformity estimation Advanced background elimination in digital holographic microscopy Boolean and non-boolean nearest neighbor architectures for out-of-plane nanomagnet logic 2nd order 2-D spatial filters and Cellular Neural Network implementations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1