{"title":"面向分布式强化学习的弹性多智能体行为评价算法","authors":"Yixuan Lin, Shripad Gade, Romeil Sandhu, Ji Liu","doi":"10.23919/ACC45564.2020.9147381","DOIUrl":null,"url":null,"abstract":"This paper considers a distributed reinforcement learning problem in the presence of Byzantine agents. The system consists of a central coordinating authority called \"master agent\" and multiple computational entities called \"worker agents\". The master agent is assumed to be reliable, while, a small fraction of the workers can be Byzantine (malicious) adversaries. The workers are interested in cooperatively maximize a convex combination of the honest (non-malicious) worker agents’ long-term returns through communication between the master agent and worker agents. A distributed actor-critic algorithm is studied which makes use of entry-wise trimmed mean. The algorithm’s communication-efficiency is improved by allowing the worker agents to send only a scalar-valued variable to the master agent, instead of the entire parameter vector, at each iteration. The improved algorithm involves computing a trimmed mean over only the received scalar-valued variable. It is shown that both algorithms converge almost surely.","PeriodicalId":288450,"journal":{"name":"2020 American Control Conference (ACC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Toward Resilient Multi-Agent Actor-Critic Algorithms for Distributed Reinforcement Learning\",\"authors\":\"Yixuan Lin, Shripad Gade, Romeil Sandhu, Ji Liu\",\"doi\":\"10.23919/ACC45564.2020.9147381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers a distributed reinforcement learning problem in the presence of Byzantine agents. The system consists of a central coordinating authority called \\\"master agent\\\" and multiple computational entities called \\\"worker agents\\\". The master agent is assumed to be reliable, while, a small fraction of the workers can be Byzantine (malicious) adversaries. The workers are interested in cooperatively maximize a convex combination of the honest (non-malicious) worker agents’ long-term returns through communication between the master agent and worker agents. A distributed actor-critic algorithm is studied which makes use of entry-wise trimmed mean. The algorithm’s communication-efficiency is improved by allowing the worker agents to send only a scalar-valued variable to the master agent, instead of the entire parameter vector, at each iteration. The improved algorithm involves computing a trimmed mean over only the received scalar-valued variable. It is shown that both algorithms converge almost surely.\",\"PeriodicalId\":288450,\"journal\":{\"name\":\"2020 American Control Conference (ACC)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC45564.2020.9147381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC45564.2020.9147381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Toward Resilient Multi-Agent Actor-Critic Algorithms for Distributed Reinforcement Learning
This paper considers a distributed reinforcement learning problem in the presence of Byzantine agents. The system consists of a central coordinating authority called "master agent" and multiple computational entities called "worker agents". The master agent is assumed to be reliable, while, a small fraction of the workers can be Byzantine (malicious) adversaries. The workers are interested in cooperatively maximize a convex combination of the honest (non-malicious) worker agents’ long-term returns through communication between the master agent and worker agents. A distributed actor-critic algorithm is studied which makes use of entry-wise trimmed mean. The algorithm’s communication-efficiency is improved by allowing the worker agents to send only a scalar-valued variable to the master agent, instead of the entire parameter vector, at each iteration. The improved algorithm involves computing a trimmed mean over only the received scalar-valued variable. It is shown that both algorithms converge almost surely.